基于SVM的数据分类预测——意大利葡萄酒种类识别

这篇博客介绍了一项基于SVM(支持向量机)对意大利葡萄酒种类进行分类的研究。利用UCI数据库中的178个样本,每个样本包含13个化学成分属性,目标是实现自动分类。通过SVM进行数据预处理和训练,最终得到98.8764%的分类准确率,显示了SVM在数据分类任务上的高效性。
摘要由CSDN通过智能技术生成

update:把程序源码和数据集也附上http://download.csdn.net/detail/zjccoder/8832699

2015.6.24

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

wine数据来自于UCI数据库,记录的是意大利同一地区3中不同品种的葡萄酒13中化学成分含量,以期通过科学的方法,达到自动分类葡萄酒的目的。

本次分类的数据共有178个样本,每个样本有13个属性,并提供每个样本的正确分类,用于检验SVM分类的准确定。

首先我们画出数据的可视化图:

% 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量
load chapter_WineClass.mat;

% 画出测试数据的box可视化图
figure
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值