目录
示例三:《基于 SC-ResNest的低分辨率水稻害虫图像识别方法》
示例五:《基于分块 LBP 和分块 PCA 的指静脉识别方法》
示例一:
为......(减少识别时间),提出一种......的...识别方法。针对传统...的问题,首先.....,然后使用....,最后.......。在公开的...(数据集/库)上使用....进行分类识别,实验结果表明:...方法相较于...方法...(优势:特征维数降低,识别时间减少%,识别准确率分别为,等误率分别为...)
示例二:
为了解决...,....的的问题,提出一种基于..的...模型。首先,引入....;然后,.....;最后,将......。实验结果表明,...模型在....(k个指标上)达到....,..准确率相对于已有文献精度提升....,并且对于....等具备更强的分类能力.
本文汇总了多种基于深度学习的指静脉识别方法,包括基于SC-ResNest的低分辨率水稻害虫图像识别、改进的ResNet、分块LBP与PCA、改进AlexNet及融合全局与局部特征的网络。这些方法通过数据增强、网络结构调整、特征融合和损失函数优化等方式,显著提高了识别准确率和鲁棒性,尤其在应对手指姿态变化时的识别性能。
订阅专栏 解锁全文
6147

被折叠的 条评论
为什么被折叠?



