BZOJ 2301, HDU 1695 莫比乌斯反演+容斥(水题)

两道水题

Problem b题目链接,区间左端点也不确定

 

我的推导,都是套路啊

注意不像YY的GCD,我们化简到Ans=\sum_{t=1}^{min(\lfloor\frac{a}{d}\rfloor,\lfloor\frac{b}{d}\rfloor)}\mu(t)\lfloor\frac{a}{td}\rfloor\lfloor\frac{b}{td}\rfloor就可以停手了!(因为分母只有一项未知,只用暴力枚举t)

②容斥:要求区间a~b和区间c~d,减去1~a-1和1~c-1两个没用到的区间,注意减多了要加回来

 

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=10000000+5;
int T,a,b,c,d,k;
int mu[N],sum[N];
int prim[N],vis[N];

inline int read()
{
	int x=0;bool f=0;char c=getchar();
	for (;c<'0'||c>'9';c=getchar()) f=c=='-'?1:0;
	for (;c>='0'&&c<='9';c=getchar()) x=x*10+c-'0';
	return f?-x:x;
}

void init()
{
	mu[1]=1;//!!
	int cnt=0;
	for(int i=2;i<=N;i++)
	{
		if(!vis[i])
		{
			prim[++cnt]=i;
			mu[i]=-1;
			
		}
		for(int j=1;(j<=cnt)&&i*prim[j]<=N;j++)
		{
			vis[i*prim[j]]=1;
			if(i%prim[j]==0)
			{
				break;
			}
			else
			{
				mu[i*prim[j]]=-mu[i];
			}
		}
	}
	
//	for(int i=1;i<=N;i++)// 上面不方便找出合数的mu 的值 
//	{
//		for(int j=1;(j<=cnt)&&(i*prim[j]<=N);j++)
//		{
//			f[i*prim[j]]+=mu[i]*1;//素数永远为1 
//		}
//	}
	
	for(int i=1;i<=N;i++)sum[i]=sum[i-1]+mu[i];//前缀和 

}

ll work(int n,int m)
{
	ll ans=0;
     n/=k,m/=k;//像YY的GCD,k不确定,还要枚举1-min(m,n)质数
     
	for(int l=1,r=0;l<=min(m,n);l=r+1)
	{
		    r=min(n/(n/l),m/(m/l));
			ans+=(ll)(sum[r]-sum[l-1])*(n/l)*(m/l);
		
	}

	return ans ;
}



int main()
{
 
  	T=read();
  	init();
  	while(T--)
     {
     	a=read();
     	b=read();
     	c=read();
     	d=read();
     	k=read();
  		printf("%lld\n",work(b,d)-work(a-1,d)-work(b,c-1)+work(a-1,c-1));//容斥

	 }
    

}

 

HDU1695 GCD 左端点为1

更水,容斥的话,只用减去一个重复区间

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100000+10;
int T,a,b,c,d,k;
int mu[N],sum[N];
int prim[N],vis[N];

inline int read()
{
	int x=0;bool f=0;char c=getchar();
	for (;c<'0'||c>'9';c=getchar()) f=c=='-'?1:0;
	for (;c>='0'&&c<='9';c=getchar()) x=x*10+c-'0';
	return f?-x:x;
}

void init()
{
	mu[1]=1;//!!
	int cnt=0;
	for(int i=2;i<=N;i++)
	{
		if(!vis[i])
		{
			prim[++cnt]=i;
			mu[i]=-1;
			
		}
		for(int j=1;(j<=cnt)&&i*prim[j]<=N;j++)
		{
			vis[i*prim[j]]=1;
			if(i%prim[j]==0)
			{
				break;
			}
			else
			{
				mu[i*prim[j]]=-mu[i];
			}
		}
	}
	
	
	for(int i=1;i<=N;i++)sum[i]=sum[i-1]+mu[i];//前缀和 

}

ll work(int n,int m)
{
	ll ans=0;
     n/=k,m/=k;
     
	for(int l=1,r=0;l<=min(m,n);l=r+1)
	{
		    r=min(n/(n/l),m/(m/l));
			ans+=(ll)(sum[r]-sum[l-1])*(n/l)*(m/l);
		
	}

	return ans ;
}



int main()
{

  	T=read();
  	init();
  	for(int i=1;i<=T;i++)
     {
     	
     	a=read();
     	b=read();
     	c=read();
     	d=read();
     	k=read();
     	
     	if(b>d)swap(b,d);
     	if(k==0)printf("Case %d: 0\n",i);
  		else printf("Case %d: %lld\n",i,work(b,d)-work(b,b)/2);

	 }
    

}

 

发布了89 篇原创文章 · 获赞 31 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览