Linux上TensorFlow的深入研究:构建一个低成本、快速、精准的图像分类器

本文介绍了如何在Ubuntu上利用GPU和TensorFlow构建一个低成本、高效的图像分类器。通过四个步骤——收集图像、训练模型、构建分类器和测试分类器,作者展示了如何训练一个针对五种鸷鸟的分类器,并与康奈尔大学的Merlin ID工具进行了对比。使用了Inception模型进行预训练,并通过重新训练得到了91.2%的测试精度。
摘要由CSDN通过智能技术生成

编者注:想要学习如何从头开始构建和训练你的第一个TensorFlow计算图,请阅读Aaron Schumacher在O’Reilly在线教程里的《你好,TensorFlow!》

在过去的八个月里,我花了大量时间学习了尽可能多的机器学习知识。我经常对在这个小但快速成长的社区中的在线慕课(MOOCs)上遇到的各种各样的人感到惊讶。他们中既有费米实验室(Fermilab)的量子研究员,也有硅谷的CEO们。最近我一直关注开源软件TensorFlow,这篇教程就是我的研究成果。

我觉得很多机器学习教程都是面向Mac系统的。使用Linux系统的一个主要优势是它是免费的,并支持基于GPU的TensorFlow。GPU的并行加速计算能力是机器学习重大进步的原因之一。因此你不需要为了构建一个快速分类器而使用最前沿的计算设备,像我用的计算机和显卡总共花费了不到400美元。

在本教程中我会告诉你如何在Ubuntu上使用GPU来训练自己的图像分类器。本教程跟Pete Warden的《“诗人”也能用TensorFlow》非常类似,但是稍有不同。我会假定你已经安装了TensorFlow和Bazel,并在你的主目录下git克隆了最新版本的TensorFlow。如果你还没有完成上述工作,你可以按照我博客上的教程进行操作。如果你的计算机没有与TensorFlow兼容GPU,你仍然可以使用这个教程,只不过它需要更长的时间。

整个训练过程非常简单,可以分为四个主要步骤:

1. 收集训练用的图像。

2. 使用TensorFlow和Inception模型来训练一个计算图/模型。

3. 编写脚本来用你的计算图来进行图像分类。

4. 通过对新图像进行分类来测试脚本。

我决定使用五种不同的鸷鸟来训练我的图像分类器。使用鸷鸟并不是一个偶然的决定,我曾在不列颠哥伦比亚省邓肯市的“

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值