10.CNN基础

传统的神经网络存在的问题

权值太多,计算量太大
权值太多,需要大量的样本进行训练

卷积神经网络CNN:

CNN通过感受野和权值共享减少了神经网络需要训练的参数个数。

卷积->池化–>卷积->池化–>卷积->池化–>全连接–>全连接

— 对于任意一个卷积网络来说,几个必不可少的部分为:
(1)输入层:用以对数据进行输入
(2)卷积层:使用给定的核函数对输入的数据进行特征提取,并根据核函数的数据产生若干个卷积特征结果
(3)池化层:用以对数据进行降维,减少数据的特征
(4)全连接层:对数据已有的特征进行重新提取并输出结果


import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100 #批次大小
n_batch = mnist.train.num_examples // batch_size  # 一共多少批次

#初始化权值
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return  tf.Variable(initial)

#初始化偏置
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return  tf.Variable(initial)

#卷积层
def conv2d(x, W): #2d是二维的卷积操作, x是input, W是filter
    # x input tensor of shape '[batch,in_height,in_width,in_channels]' -->分别为:批次、图片高、图片宽、图片通道(黑白是1, 彩色是3)
    # W filter/kernel tensor of shape [filter_height,filter_width,in_channels,out_channels]
    # strides[0]=strides[3]=1(一般都是这样写),strides[1]代表x方向的步长,strides[2]代表y方向的步长
    # padding :A string from :"SAME","VALID" ===="SAME":代表填充(卷积后规格大小不变),"VALID":代表不填充
    return tf.nn.conv2d(x,W, strides=[1,1,1,1], padding='SAME') # strides=[1,1,1,1] 相当于图像不变

#池化层
def max_pool_2x2(x):
    # ksize [1,x,y,1]  x*y表示池化的窗口的大小
    # strides[1]:代表x方向步长、strides[2]:代表y方向步长
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1],padding='SAME') # strides=[1,2,2,1]相当于图像缩小2倍

x = tf.placeholder(tf.float32, [None, 784])  # 行,列   28*28=794 列
y = tf.placeholder(tf.float32, [None, 10])

#改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
x_image = tf.reshape(x, [-1,28,28,1])  # batch是批次 这里是100  把784复原为28*28   1是黑白图片

#初始化第一个卷积层的权值和偏置值
# 5*5的卷积采样窗口,1是输入的通道(黑白是1,彩色是3),32是输出的通道数,32个卷积核从1个平面抽取特征,产生32个特征平面
W_conv1 = weight_variable([5,5,1,32]) #开始都是 从1个平面抽取特征,这里产生32个特征平面
b_conv1 = bias_variable([32])#每个卷积核一个偏置值

#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1) #进行卷积采样, [-1,28,28,1]进过窗口[5,5,1,32]  方式strides=[1,1,1,1] 输出1:1,32个特征值
h_pool1 = max_pool_2x2(h_conv1) #进行最大池化  输出1:1,32个特征值,进过ksize=[1,2,2,1], strides=[1,2,2,1], 输出缩小1/2,变成14*14

# 初始化第二个卷积层的权值和偏置值
# 5*5的采样窗口,64个卷积核从32个特征平面抽取特征(每个卷积核对32个特征平面卷积,再将对应位置相加形成一个特征平面),产生64个特征平面
W_conv2 = weight_variable([5, 5, 32, 64]) #从之前的32个特征平面,在提取特征,形成64个特征平面
b_conv2 = bias_variable([64])  # 每个卷积核一个偏置值

# 把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)  # 进行最大池化

#28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14 ========== 卷积的核:weight_variable([5,5,1,32]) strides=[1,1,1,1] 池化的核  ksize=[1,2,2,1], strides=[1,2,2,1]
#第二次卷积后为14*14,第二次池化后变为7*7  ======= 卷积的核:weight_variable([5, 5, 32, 64]) strides=[1,1,1,1] 池化的核  ksize=[1,2,2,1], strides=[1,2,2,1]
#进行上面操作后得到64张7*7的平面   =======  #开始都是 从1个平面抽取特征,这里产生32个特征平面 --->#从之前的32个特征平面,在提取特征,形成64个特征平面

#初始化第一个全连接层的权值
#上一层有7*7*64个神经元,全连接层有1024个神经元
W_fc1 = weight_variable([7*7*64, 1024]) # 进过第二次池化输出得到,7*7的图片大小,64个特征值,设置全连接层的神经元是1024
b_fc1 = bias_variable([1024])#1024个节点

#把池化层2的输出扁平化为1维,-1代表批次规格
h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])  # -1是batch 把后面的维度扁平化
#求第一个全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  # 获得全连接层的输出

#keep_prob用来表示神经元的输出概率
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#初始化第二个全连接层
W_fc2 = weight_variable([1024, 10]) #上一层有1024个神经元,打算输出全连接层有10个神经元,=10个分类
b_fc2 = bias_variable([10]) ##10个节点

#计算输出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # 得到概率

#交叉熵代价函数的平均值
cross_entropy =tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=prediction))
#Adam优化器 学习率:0.01或者1e-2:代表10的-2次方
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔列表中
corrent_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y,1 )) #argmax返回一维张量中最大数额位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(corrent_prediction, tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(21):# 21个周期
        for batch in range(n_batch): #获得n_batch个批次的数据
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step, feed_dict={x:batch_xs , y:batch_ys, keep_prob:0.7})
        # 利用测试集进行测试该迭代时模型的准确率
        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels,keep_prob:1.0})
        # 打印迭代次数及对应准确率
        print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. ARIMA 2. SARIMA 3. VAR 4. Auto-ARIMA 5. Auto-SARIMA 6. LSTM 7. GRU 8. RNN 9. CNN 10. MLP 11. DNN 12. MLP-LSTM 13. MLP-GRU 14. MLP-RNN 15. MLP-CNN 16. LSTM-ARIMA 17. LSTM-MLP 18. LSTM-CNN 19. GRU-ARIMA 20. GRU-MLP 21. GRU-CNN 22. RNN-ARIMA 23. RNN-MLP 24. RNN-CNN 25. CNN-ARIMA 26. CNN-MLP 27. CNN-LSTM 28. CNN-GRU 29. ARIMA-SVM 30. SARIMA-SVM 31. VAR-SVM 32. Auto-ARIMA-SVM 33. Auto-SARIMA-SVM 34. LSTM-SVM 35. GRU-SVM 36. RNN-SVM 37. CNN-SVM 38. MLP-SVM 39. LSTM-ARIMA-SVM 40. LSTM-MLP-SVM 41. LSTM-CNN-SVM 42. GRU-ARIMA-SVM 43. GRU-MLP-SVM 44. GRU-CNN-SVM 45. RNN-ARIMA-SVM 46. RNN-MLP-SVM 47. RNN-CNN-SVM 48. CNN-ARIMA-SVM 49. CNN-MLP-SVM 50. CNN-LSTM-SVM 51. CNN-GRU-SVM 52. ARIMA-RF 53. SARIMA-RF 54. VAR-RF 55. Auto-ARIMA-RF 56. Auto-SARIMA-RF 57. LSTM-RF 58. GRU-RF 59. RNN-RF 60. CNN-RF 61. MLP-RF 62. LSTM-ARIMA-RF 63. LSTM-MLP-RF 64. LSTM-CNN-RF 65. GRU-ARIMA-RF 66. GRU-MLP-RF 67. GRU-CNN-RF 68. RNN-ARIMA-RF 69. RNN-MLP-RF 70. RNN-CNN-RF 71. CNN-ARIMA-RF 72. CNN-MLP-RF 73. CNN-LSTM-RF 74. CNN-GRU-RF 75. ARIMA-XGBoost 76. SARIMA-XGBoost 77. VAR-XGBoost 78. Auto-ARIMA-XGBoost 79. Auto-SARIMA-XGBoost 80. LSTM-XGBoost 81. GRU-XGBoost 82. RNN-XGBoost 83. CNN-XGBoost 84. MLP-XGBoost 85. LSTM-ARIMA-XGBoost 86. LSTM-MLP-XGBoost 87. LSTM-CNN-XGBoost 88. GRU-ARIMA-XGBoost 89. GRU-MLP-XGBoost 90. GRU-CNN-XGBoost 91. RNN-ARIMA-XGBoost 92. RNN-MLP-XGBoost 93. RNN-CNN-XGBoost 94. CNN-ARIMA-XGBoost 95. CNN-MLP-XGBoost 96. CNN-LSTM-XGBoost 97. CNN-GRU-XGBoost 98. ARIMA-ANN 99. SARIMA-ANN 100. VAR-ANN 上面这些缩写模型的全称及相关用途功能详细解释
07-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值