首先表明onnx是优化的推理过程,而不是训练过程,也就是使用cpu计算的过程
1.将对应的模型结构导出保存
model = torch.load(model_path).to(torch.device("cuda"))
model.eval()
if length == 32:
data = [[[2, 16, 2874, 20, 3, 16, 36, 130, 5605, 458, 20, 3,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0]],
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0]],
[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0]]]
else:
data = [[[2, 16, 2874, 20, 3, 16, 36, 130, 5605, 458, 2

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



