- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
第P3周:Pytorch实现天气识别
我的环境:
- 语言:Python3.12.2
- 编译器:jupyter notebook
- 框架:Pytorch with torch:2.2.2 + torchvision:0.17.2
一、前期准备
1.设置GPU/CPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cpu')
2.导入数据
data_dir = '../data/weather_photos/' #../data表示在当前目录的上一级目录寻找data文件,在当前目录则使用./data
data_dir = pathlib.Path(data_dir)#将字符串类型文件夹路径转换为pathlib.Path对象
data_paths = list(data_dir.glob('*'))
# glob('*')表示获取data_dir路径下所有文件路径,generator类型转变成list
# generator只可遍历一次,可用next(generator)生成下一个元素'''
print(data_paths)
classNames = [str(i).split("\\")[-1] for i in data_paths]# win中使用\\, macOS和Linux使用正斜杠/
classNames
[WindowsPath('../data/weather_photos/cloudy'), WindowsPath('../data/weather_photos/rain'), WindowsPath('../data/weather_photos/shine'), WindowsPath('../data/weather_photos/sunrise')]
['cloudy', 'rain', 'shine', 'sunrise']
# 查找所有以 .txt 结尾的文件
# data_paths = list(data_dir.glob('*.txt'))
# 查找所有以 weather 开头的文件或文件夹
# data_paths = list(data_dir.glob('weather*'))
# 查找所有以 weather 开头的文件夹
# data_paths = list(data_dir.glob('weather*/'))
# 查找所有以 weather 开头的文件夹中的所有 .jpg 文件
# data_paths = list(data_dir.glob('weather*/*.jpg'))
# 查找所有以 weather 开头的文件夹中所有以cloudy开头的文件
# data_paths = list(data_dir.glob('weather*/cloudy*'))
# 查找所有以 weather 开头的文件夹及其子文件夹中的所有 .jpg 文件
# data_paths = list(data_dir.glob('weather**/*.jpg'))
import matplotlib.pyplot as plt
from PIL import Image
# 指定图像文件夹路径
image_folder = '../data/weather_photos/cloudy'
# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6),dpi=150)
# axes type: class 'numpy.ndarray', fig type:matplotlib.figure.Figure
# print(fig)得到Figure(1600x600),表示1600x600的像素-(像素=英寸x分辨率dpi),默认dpi=100也可以自调
# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files): #使用.flat将axes转为一维数
img_path = os.path.join(image_folder, img_file)
img = Image.open(img_path)
ax.imshow(img)
ax.axis("off")
# 显示图像
plt.tight_layout()
plt.show()
python tips:
str.endswith(suffix[, start[, end]])
endswith() 方法用于判断字符串是否以指定后缀结尾,如果以指定后缀结尾返回True,否则返回False。可选参数"start"与"end"为检索字符串的开始与结束位置。
suffix可以是字符串也可以十个元素
str = "this is string example....wow!!!";
# 这是区分大小写的,如果是Wow!!!则是False
suffix = "wow!!!";
print(str.endswith(suffix));
print(str.endswith(("wow","example","wow!!!"))) #can use tuple to search possible ends
# 这里不用从20开始,从10也是True,因为wow是在它们之后才出现
print(str.endswith(suffix,10));
suffix = "is";
print(str.endswith(suffix, 1, 4));
print(str.endswith(suffix, 1, 6)); #start=1, end=6 ,remember the whole searching is like [start,end)
True
True
True
True
False
total_datadir = '../data/weather_photos/'
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正态分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] ImageNet根据数百万张图像得到的。
])
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
print(total_data) #总共1125张图片
#ImageFolder已经根据子文件夹的名称设定了标签,0-3
class_to_idx = total_data.class_to_idx
print(class_to_idx)
Dataset ImageFolder
Number of datapoints: 1125
Root location: ../data/weather_photos/
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}
from chatgpt:
- datasets.ImageFolder()是PyTorch中torchvision.datasets模块的一个函数,用于加载一个包含多个类别的图像数据集。它将文件夹中的子文件夹视为不同的类别,并根据子文件夹的名称为每个类别分配一个唯一的标签。在每个子文件夹中,包含属于该类别的所有图像。
- datasets.ImageFolder()的主要功能是将一个图像文件夹结构转换为一个可用于训练和验证神经网络的数据集。它还允许你指定一个图像变换(transform),用于在加载图像时对其进行预处理。
以下是datasets.ImageFolder()的一些关键参数:
- root:数据集的根目录,包含各个类别的子文件夹。
- transform:一个可选的图像变换,用于在加载图像时对其进行预处理。
- target_transform:一个可选的标签变换,用于在加载标签时对其进行预处理。
- loader:一个用于加载图像的函数,默认为PIL.Image.open。
- is_valid_file:一个可选的函数,用于检查文件是否有效。默认情况下,它接受所有文件。
3.划分数据集
train_size = int(0.8 * len(total_data)) #1125张图片x0.8为900
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
# train_size表示训练集大小,将总体数据长度的80%转换为整数得到
#test_size表示测试集大小,总体数据长度减去训练集大小
(<torch.utils.data.dataset.Subset at 0x1f44b82f9b0>,
<torch.utils.data.dataset.Subset at 0x1f4530d7830>)
使用torch.utils.data.random_split()
方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for imgs, labels in train_dl:
print("shape of imgs [N,C,H,W]:", imgs.shape)
print("shape of labels:", labels.shape, labels.dtype)
break
shape of imgs [N,C,H,W]: torch.Size([32, 3, 224, 224])
shape of labels: torch.Size([32]) torch.int64
二、构建简单的CNN网络
关于卷积层、池化层的计算:
网络结构图:
此图不对应以下网络的构建代码
大家注意一下在卷积层和全连接层之间,我们可以使用之前是torch.flatten()
也可以使用下面的x.view()
亦或是torch.nn.Flatten()
。torch.nn.Flatten()
与TensorFlow中的Flatten()
层类似,前两者则仅仅是一种数据集拉伸操作(将二维数据拉伸为一维),torch.flatten()
方法不会改变x本身,而是返回一个新的张量。而x.view()
方法则是直接在原有数据上进行操作。
数据shape
的变化:
(3, 224, 224)
(输入数据)
-> (12, 220, 220)
(经过卷积层1:
12个卷积核,卷积核为3x5x5,计算输出(224-5+1)x(224-5+1)x12)
-> (12, 216, 216)
(经过卷积层2)
12个卷积核,卷积核为12x5x5,计算输出(220-5+1)x(220-5+1)x12)、
-> (12, 108, 108)
(经过池化层1:max pooling)
kernel_size is 2 and stride = 2,计算输出(216//2)x(216//2)x12
-> (24, 104, 104)
(经过卷积层3,cov4)
24个卷积核, 24x5x5, 计算输出(108-5+1)x(108-5+1)x24
-> (24, 100, 100)
(经过卷积层4,cov5)
24个卷积核,24x5x5, 计算输出(104-5+1)x(104-5+1)x24
-> (24, 50, 50)
(经过池化层2:max pooling)
kernel_size is 2 and stride = 2,计算输出(100//2)x(100//2)x24
-> 60000 -> num_classes(4)
【卷积层的计算】与【池化层的计算】这两篇文章有手动推导这个过程
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12) #
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool1 = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.pool2 = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(24*50*50, len(classNames)) #full-co
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool1(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool2(x)
x = x.view(-1, 24*50*50) #将输入张量x展平为一维向量,以便输入到全连接层。-1表示自动计算批量大小。
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
summary(model)
Using cpu device
=================================================================
Layer (type:depth-idx) Param #
=================================================================
Network_bn --
├─Conv2d: 1-1 912
├─BatchNorm2d: 1-2 24
├─Conv2d: 1-3 3,612
├─BatchNorm2d: 1-4 24
├─MaxPool2d: 1-5 --
├─Conv2d: 1-6 7,224
├─BatchNorm2d: 1-7 48
├─Conv2d: 1-8 14,424
├─BatchNorm2d: 1-9 48
├─MaxPool2d: 1-10 --
├─Linear: 1-11 240,004
=================================================================
Total params: 266,320
Trainable params: 266,320
Non-trainable params: 0
=================================================================
trainable_parameters: 对于cov1卷积层,它的输入通道数为 3,输出通道数为 12,卷积核大小为5x5,因此它的权重参数数量为 5x5x3x12=900, 偏置参数数量为输出通道数 12,因此总的可训练参数数量为 900+12=912
三、训练模型
1.设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2.编写训练函数
1. optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
2. loss.backward()
PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。
3. optimizer.step()
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3.编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4.正式训练
1. model.train()
model.train()的作用是启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。
2. model.eval()
model.eval()的作用是不启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。
训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。
epochs = 10
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:93.8%, Train_loss:0.239, Test_acc:89.8%,Test_loss:0.265
Epoch: 2, Train_acc:94.2%, Train_loss:0.228, Test_acc:92.0%,Test_loss:0.245
Epoch: 3, Train_acc:93.7%, Train_loss:0.235, Test_acc:92.0%,Test_loss:0.387
Epoch: 4, Train_acc:93.4%, Train_loss:0.217, Test_acc:91.1%,Test_loss:0.236
Epoch: 5, Train_acc:94.7%, Train_loss:0.241, Test_acc:88.4%,Test_loss:0.292
Epoch: 6, Train_acc:93.4%, Train_loss:0.222, Test_acc:91.1%,Test_loss:0.225
Epoch: 7, Train_acc:95.7%, Train_loss:0.198, Test_acc:91.6%,Test_loss:0.227
Epoch: 8, Train_acc:94.1%, Train_loss:0.185, Test_acc:92.4%,Test_loss:0.205
Epoch: 9, Train_acc:95.4%, Train_loss:0.197, Test_acc:91.6%,Test_loss:0.239
Epoch:10, Train_acc:95.3%, Train_loss:0.179, Test_acc:93.8%,Test_loss:0.215
Done
四、结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
五、学习总结:
- 掌握了卷积和池化操作的过程并进行手动计算
- 了解每层的trainable parameters构成并掌握了如何计算
- 了解数据的预处理,导入等操作,
pathlib.Path()
,.glob()
,os.listdir()
等方法,但仍旧对python中处理文件,转换数据类型的方法和库的应用了解甚少 - 笔记 from chatgpt:
卷积操作具有平移不变性,即对于输入数据中相同的特征,无论它们在输入数据中的位置如何,卷积操作都可以提取出相同的特征。这是因为卷积操作是通过对输入数据的局部区域进行卷积操作得到特征图的,因此对于输入数据中相同的特征,它们在不同位置上的局部区域是相似的,因此卷积操作可以提取出相同的特征。
池化操作具有平移和缩放不变性,即对于输入数据中的小的平移和缩放,池化操作可以保持输出值不变。这是因为池化操作是通过对输入数据的局部区域进行汇聚得到输出值的,因此对于输入数据中的小的平移和缩放,池化操作的输出值不会发生变化。
然而,卷积操作和池化操作并不具有旋转不变性,即对于输入数据中的旋转,卷积操作和池化操作无法保持输出值不变。为了增强网络对于旋转的不变性,可以在卷积神经网络中引入旋转不变性的操作,例如旋转卷积(RoConv)和旋转池化(RoPool)等。这些操作可以使得网络对于输入数据中的旋转具有一定的不变性。