计算机视觉(Computer Vision)是一个迅速发展的领域,它结合了图像处理、机器学习、深度学习等技术,应用广泛,涵盖了自动驾驶、医疗图像分析、安防监控、AR/VR等多个领域。以下是一个详细的学习路径和学习地图,帮助你系统化地学习计算机视觉。
1. 基础阶段:数学、图像处理和编程基础
关键知识点:
- 线性代数:矩阵、向量、特征值与特征向量,在图像变换与卷积操作中非常关键。
- 微积分:导数、梯度,特别是卷积神经网络中的反向传播算法。
- 概率与统计:概率分布、贝叶斯理论、最大似然估计等,在计算机视觉中的图像建模、分类任务中起到重要作用。
- 编程基础:掌握Python编程,熟悉Numpy、Matplotlib等基础库,开始接触OpenCV库进行图像处理。
推荐资源:
- 书籍:
- 《计算机视觉:算法与应用》 by Richard Szeliski
- 《数字图像处理》 by Rafael C. Gonzalez
- 在线课程:
- Coursera上的《Mathematics for Machine Learning》
- Khan Academy的《Linear Algebra》、《Calculus》课程