【AI教我读大学】计算机视觉方面的学习路径,学习地图

计算机视觉(Computer Vision)是一个迅速发展的领域,它结合了图像处理、机器学习、深度学习等技术,应用广泛,涵盖了自动驾驶、医疗图像分析、安防监控、AR/VR等多个领域。以下是一个详细的学习路径和学习地图,帮助你系统化地学习计算机视觉。

1. 基础阶段:数学、图像处理和编程基础

关键知识点:
  • 线性代数:矩阵、向量、特征值与特征向量,在图像变换与卷积操作中非常关键。
  • 微积分:导数、梯度,特别是卷积神经网络中的反向传播算法。
  • 概率与统计:概率分布、贝叶斯理论、最大似然估计等,在计算机视觉中的图像建模、分类任务中起到重要作用。
  • 编程基础:掌握Python编程,熟悉Numpy、Matplotlib等基础库,开始接触OpenCV库进行图像处理。
推荐资源:
  • 书籍
    • 《计算机视觉:算法与应用》 by Richard Szeliski
    • 《数字图像处理》 by Rafael C. Gonzalez
  • 在线课程
    • Coursera上的《Mathematics for Machine Learning》
    • Khan Academy的《Linear Algebra》、《Calculus》课程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zomnlin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值