信号卷积

卷积的定义:

(fg)(t)=f(u)g(tu)du

卷积的物理意义:

首先从表达式进行分析,对于任意一个时刻 t ,输出信号为信号g(tu)在另一个信号 f(u) 上的加权叠加,其中 g(tu) 可以看成加权值, g(tu) 可以看成是 g(t) 在时域上向右平移 u
下面以离散信号为例:
已知x[n]=[a b c]
这里写图片描述
已知 y[n]=[i j k]
这里写图片描述
x[n]y[n] 的过程如下。
第一步: x[n]y[0] 并平移到位置0
这里写图片描述
第二步: x[n]y[1] 并平移到位置1
这里写图片描述
第三步: x[n]y[2] 并平移到位置2
这里写图片描述
最后,把上面三个图叠加,就得到了 x[n]y[n]
这里写图片描述


对卷积的意义,还有一个很形象的比喻。比如某人打你一拳,疼痛感会持续一段时间,在任意时间 t 的疼痛感可以表示为函数f(t)。设某人在某个时刻 t 打你的力度为g(t)。在1,2,…,60秒某人分别打你一拳,并且力度为 g(t) ,那么任意一个时刻你的疼痛感则为每拳疼痛效果的叠加,即 f(t)g(t) ,这个就是卷积的含义了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值