早在公元前300多年,古希腊数学家欧几里得就开创了研究 2 p − 1 2^{p}-1 2p−1 的先河.他在名著《几何原本》第九章中论述完全数时指出:如果 2 p − 1 2^{p}-1 2p−1 是素数,则 2 p − 1 ( 2 p − 1 ) 2^{p-1}(2^{p}-1) 2p−1(2p−1) 是完全数.
由于马林·梅森是当时欧洲科学界一位独特的中心人物,梅森学识渊博、才华横溢、为人热情以及最早系统而深入地研究 2 p − 1 2^{p}-1 2p−1 型的数,为了纪念他,数学界就把这种数称为 “梅森数”,并以 M p M_{p} Mp 记之(其中 M M M 为梅森姓名的首字母),即 M p = 2 p − 1. M_{p}=2^{p}-1. Mp=2p−1. 如果梅森数为素数,则称之为 “梅森素数”(即 2 p − 1 2^{p}-1 2p−1 型素数).
小时候,我们可能都有过一些天真的想法,比如(像夸父逐日那样)一直往前走会怎样呢?这是人类追求极限探索世界最初的想法. 梅森素数就像那个奥妙无穷的世界的浓缩,由于这种素数具有着独特的性质(比方说和完全数密切相关)和无穷的魅力,千百年来一直吸引着众多数学家(包括欧几里得、费马、欧拉等)和无数的数学爱好者对它进行探究.
2017 年 12 月 26 日 2017年12月26日 2017年12月26日,美国田纳西州日耳曼敦的GIMPS志愿者乔纳森·佩斯 ( J o n a t h a n P a c e ) (Jonathan Pace) (JonathanPace) 发现了第 50 50 50个梅森素数 2 77232917 - 1. 2^{77232917}-1. 277232917-1.这个超大素数有 23249425 23249425 23249425位数,再次刷新了已知最大素数纪录.
是否存在无穷多个梅森素数是数论中未解决的著名难题之一.
下面来证明:
存在无穷多个梅森素数
引理:若 n > 1 , a n − 1 n>1,a^{n}-1 n>1,an−1 是素数,则 a = 2 , n a=2,n a=2,n 是素数
证明:
当 n > 1 n>1 n>1 时,若 a > 2 a>2 a>2 则
由 a n − 1 = ( a − 1 ) ( a n − 1 + a n − 2 + a n − 3 + . . . + a + 1 ) a^{n}-1=(a-1)(a^{n-1}+a^{n-2}+a^{n-3}+...+a+1) an−1=(a−1)(an−1+an−2+