Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]
:
3 / \ 9 20 / \ 15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]
:
1 / \ 2 2 / \ 3 3 / \ 4 4
Return false.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root)
{
if(root==NULL)
return true;
else{
int l,r;
l=height(root->left);
r=height(root->right);
if((l>r+1)||(r>l+1))
return false;
else
return isBalanced(root->left)&&isBalanced(root->right);
}
}
int height(TreeNode* root)
{
if(root==NULL)
return 0;
else
{
int l=height(root->left);
int r=height(root->right);
return 1+((l>r)?l:r);
}
}
};
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isBalanced(TreeNode* root)
{
if(root==NULL)
return true;
else{
int l,r;
l=height(root->left);
r=height(root->right);
if((l>r+1)||(r>l+1))
return false;
else
return isBalanced(root->left)&&isBalanced(root->right);
}
}
int height(TreeNode* root)
{
if(root==NULL)
return 0;
else
{
int l=height(root->left);
int r=height(root->right);
return 1+((l>r)?l:r);
}
}
};