深度神经网络的正则化

1. DNN的L1&L2正则化

  L1正则化和L2正则化原理类似,这里重点讲述DNN的L2正则化。

    假如我们的每个样本的损失函数是均方差损失函数,则所有的m个样本的损失函数为:

   

 则加上了L2正则化后的损失函数是:

   

 其中,λ即我们的正则化超参数,实际使用时需要调参。而w为所有权重矩阵W的所有列向量。

2. DNN通过集成学习的思路正则化

    除了常见的L1&L2正则化,DNN还可以通过集成学习的思路正则化。在DNN中,使用Bagging的思路。不过和随机森林不同的是,这里不是若干个决策树,而是若干个DNN的网络。

 首先我们要对原始的m个训练样本进行有放回随机采样,构建N组m个样本的数据集,然后分别用这N组数据集去训练我们的DNN。即采用我们的前向传播算法和反向传播算法得到N个DNN模型的W,b参数组合,最后对N个DNN模型的输出用加权平均法或者投票法决定最终输出。

3. DNN通过dropout 正则化

 所谓的Dropout指的是在用前向传播算法和反向传播算法训练DNN模型时,一批数据迭代时,随机的从全连接DNN网络中去掉一部分隐藏层的神经元。然后用这个去掉隐藏层的神经元的网络来进行一轮迭代,更新所有的W,b。这就是所谓的dropout。

 

 当然,dropout并不意味着这些神经元永远的消失了。在下一批数据迭代前,我们会把DNN模型恢复成最初的全连接模型,然后再用随机的方法去掉部分隐藏层的神经元,接着去迭代更新W,b。当然,这次用随机的方法去掉部分隐藏层后的残缺DNN网络和上次的残缺DNN网络并不相同。

 从上面的描述可以看出dropout和Bagging的正则化思路还是很不相同的。dropout模型中的W,b是一套,共享的。所有的残缺DNN迭代时,更新的是同一组W,b;而Bagging正则化时每个DNN模型有自己独有的一套W,b参数,相互之间是独立的。当然他们每次使用基于原始数据集得到的分批的数据集来训练模型,这点是类似的。

4. DNN通过增强数据集正则化

    增强模型泛化能力最好的办法是有更多更多的训练数据,但是在实际应用中,更多的训练数据往往很难得到。有时候我们不得不去自己想办法能无中生有,来增加训练数据集,进而得到让模型泛化能力更强的目的。

    对于我们传统的机器学习分类回归方法,增强数据集还是很难的。你无中生有出一组特征输入,却很难知道对应的特征输出是什么。但是对于DNN擅长的领域,比如图像识别,语音识别等则是有办法的。以图像识别领域为例,对于原始的数据集中的图像,我们可以将原始图像稍微的平移或者旋转一点点,则得到了一个新的图像。虽然这是一个新的图像,即样本的特征是新的,但是我们知道对应的特征输出和之前未平移旋转的图像是一样的。用类似的思路,我们可以对原始的数据集进行增强,进而得到增强DNN模型的泛化能力的目的。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值