合纵连横

合纵连横

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述

乱世天下,诸侯割据。每个诸侯王都有一片自己的领土。但是不是所有的诸侯王都是安分守己的,实力强大的诸侯国会设法吞并那些实力弱的,让自己的领土面积不断扩大。而实力弱的诸侯王为了不让自己的领土被吞并,他会联合一些其他同样弱小的诸侯国,组成联盟(联盟不止一个),来共同抵抗那些强大的诸侯国。 强大的诸侯国为了瓦解这些联盟,派出了最优秀的间谍来离间他们,使一些诸侯国退出联盟。最开始,每个诸侯国是一个联盟。

有两种操作

1、U x y 表示xy在同一个联盟。0x,y<n

2、D x   表示x退出联盟。

输入
多组测试数据
第一行两个数,n和m(1 ≤ n≤ 10^5, 1 ≤ m ≤10^5),分别表示诸侯国的个数和操作次数。
接下来有m行操作
输出
输出联盟的个数
样例输入
5 7
U 0 1
U 1 2
U 0 3
D 0
U 1 4
D 2
U 0 2
10 1
U 0 9
样例输出
Case #1: 2
Case #2: 9
上传者
ACM_马振阳


贴一下大神思路(地址):


这道题一读题,应该都能想到要用并查集归并集合。这道需要实现并查集的删除操作。那么问题就来了,并查集的的结构是一颗树,它的边是有向且只指向父节点的。那么删除一个节点(也就是让它的父节点成为它自己),指向这个节点孩子节点的根就会丢失。学习这个算法的时候网上说是用虚根,看了很久才看懂。

我就想用通俗更易懂的描述出来”虚根“:

例子:食品店要给顾客甲派送食物food装在箱子box里,box有个挂钩(挂钩就相当于连接父节点的边)。food[]存储箱子编号,box[]存父节点。

food有很多,把要送的归在一类后。顾客甲打电话退订了某些。

如下图,food[2]=2.编为2的food它的箱子box编号是2

box[3]=3;编号为3的箱子box它的挂钩挂在自己上(它的父节点是它自己)。

 

建立如下并查集树。box[3]=2;

 

然后顾客甲打电话要退订编号为4,6的food。

接下来我们只需要把编号为4的food拿走,用编号为n++(7)的箱子装起来。

food[4]=7;

box[7]=[7];


编号为4的箱子依然留在那里,这样就不影响编号4的box后面挂的箱子的根节点就不会丧失。

拿走6同理。

food[6]=8;

box[8]=8;


接下来又有一顾客乙要走了4,6.

box[food[6]]=food[4];\\把编号为6的food它所在的箱子8的挂钩挂到编号为4的food它所在的箱子7上。


food 2,3,1,5归顾客甲一类,food 4,6归顾客乙一类。这样虽然浪费了盒子但是归类是正确的。搜索x代表元,也就是通过x的箱子找到根箱子。


第一次做这种题,明知道是用并查集做,但是却写不出来。看了大神的博客后恍然大悟。


AC代码:


#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
#define T 1000050
#define inf 0x3f3f3f3f
int a[T],box[T],bo[T];
int find(int x)
{
	int f=x;
	while(box[f]!=f)
	{
		f = box[f];
	}
	int i = x;
	while(i != f)
	{
		int j = box[i];
		box[i] = f;
		i = j;
	}
	return f;
}
int main()
{
    /*freopen("input.txt","r",stdin);*/
	int i,j,k,n,m,f=0;
	char s;
	while(~scanf("%d%d",&n,&m))
	{
		k=n;
		for(i=0;i<n;++i){a[i]=box[i]=i;}
		while(m--){
			getchar();
		   scanf("%c",&s);
		   if(s=='U'){
			   scanf("%d %d",&i,&j);
			   int x = find(a[i]);int y = find(a[j]);
			   if(x!=y){
				   box[x] = y;
			   }
		   }
		   else{
			   scanf("%d",&i);
			   box[k] = k;
			   a[i] =k++;
		   }
		}
		memset(bo,0,sizeof(bo));
		for(i=0,k=0;i<n;++i){
			if(!bo[find(a[i])])bo[find(a[i])]=1,k++;
		}
		printf("Case #%d: %d\n",++f,k);
	}
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值