合纵连横
-
描述
-
乱世天下,诸侯割据。每个诸侯王都有一片自己的领土。但是不是所有的诸侯王都是安分守己的,实力强大的诸侯国会设法吞并那些实力弱的,让自己的领土面积不断扩大。而实力弱的诸侯王为了不让自己的领土被吞并,他会联合一些其他同样弱小的诸侯国,组成联盟(联盟不止一个),来共同抵抗那些强大的诸侯国。 强大的诸侯国为了瓦解这些联盟,派出了最优秀的间谍来离间他们,使一些诸侯国退出联盟。最开始,每个诸侯国是一个联盟。
有两种操作
1、U x y 表示x和y在同一个联盟。(0≤x,y<n)
2、D x 表示x退出联盟。
-
输入
-
多组测试数据
第一行两个数,n和m(1 ≤ n≤ 10^5, 1 ≤ m ≤10^5),分别表示诸侯国的个数和操作次数。
接下来有m行操作
输出
- 输出联盟的个数 样例输入
-
5 7 U 0 1 U 1 2 U 0 3 D 0 U 1 4 D 2 U 0 2 10 1 U 0 9
样例输出
-
Case #1: 2 Case #2: 9
上传者
-
ACM_马振阳
贴一下大神思路(地址):
这道题一读题,应该都能想到要用并查集归并集合。这道需要实现并查集的删除操作。那么问题就来了,并查集的的结构是一颗树,它的边是有向且只指向父节点的。那么删除一个节点(也就是让它的父节点成为它自己),指向这个节点孩子节点的根就会丢失。学习这个算法的时候网上说是用虚根,看了很久才看懂。
我就想用通俗更易懂的描述出来”虚根“:
例子:食品店要给顾客甲派送食物food装在箱子box里,box有个挂钩(挂钩就相当于连接父节点的边)。food[]存储箱子编号,box[]存父节点。
food有很多,把要送的归在一类后。顾客甲打电话退订了某些。
如下图,food[2]=2.编为2的food它的箱子box编号是2
box[3]=3;编号为3的箱子box它的挂钩挂在自己上(它的父节点是它自己)。
建立如下并查集树。box[3]=2;
然后顾客甲打电话要退订编号为4,6的food。
接下来我们只需要把编号为4的food拿走,用编号为n++(7)的箱子装起来。
food[4]=7;
box[7]=[7];
编号为4的箱子依然留在那里,这样就不影响编号4的box后面挂的箱子的根节点就不会丧失。
拿走6同理。
food[6]=8;
box[8]=8;
接下来又有一顾客乙要走了4,6.
box[food[6]]=food[4];\\把编号为6的food它所在的箱子8的挂钩挂到编号为4的food它所在的箱子7上。
food 2,3,1,5归顾客甲一类,food 4,6归顾客乙一类。这样虽然浪费了盒子但是归类是正确的。搜索x代表元,也就是通过x的箱子找到根箱子。
第一次做这种题,明知道是用并查集做,但是却写不出来。看了大神的博客后恍然大悟。
AC代码:
#include<iostream> #include<algorithm> #include<cstring> #include<string> #include<cstdio> using namespace std; #define T 1000050 #define inf 0x3f3f3f3f int a[T],box[T],bo[T]; int find(int x) { int f=x; while(box[f]!=f) { f = box[f]; } int i = x; while(i != f) { int j = box[i]; box[i] = f; i = j; } return f; } int main() { /*freopen("input.txt","r",stdin);*/ int i,j,k,n,m,f=0; char s; while(~scanf("%d%d",&n,&m)) { k=n; for(i=0;i<n;++i){a[i]=box[i]=i;} while(m--){ getchar(); scanf("%c",&s); if(s=='U'){ scanf("%d %d",&i,&j); int x = find(a[i]);int y = find(a[j]); if(x!=y){ box[x] = y; } } else{ scanf("%d",&i); box[k] = k; a[i] =k++; } } memset(bo,0,sizeof(bo)); for(i=0,k=0;i<n;++i){ if(!bo[find(a[i])])bo[find(a[i])]=1,k++; } printf("Case #%d: %d\n",++f,k); } return 0; }
-
多组测试数据