密集上采样(DUC)和混合空洞卷积(HDC)

转载自: https://zhuanlan.zhihu.com/p/26659914
详细可参考: https://blog.csdn.net/u011974639/article/details/79460893

本篇论文主要有两个创新点,DUC(dense upsampling convolution)和HDC(hybrid dilated convolution),分别针对上采样和dilated convolution问题进行改进。

我用pytorch实现了DUC功能,代码放在我的github上了,欢迎star,欢迎讨论。

DUC

语义分割任务下的网络基本都具有encoding和decoding的过程,而大多数网络在decoding时使用的是双线性插值。而双线性插值是不能学习的,且会丢失细节信息。所以,文章中提出了一种方法:dense updampling convolution——通过学习一些系列的放大的过滤器来放大降采样的feature map到最终想要的尺寸。具体结构如下:

整个想法很清晰,就是将长宽尺寸上的损失通过通道维度来弥补。假设原图大小为 [公式],经过ResNet后维度变为 [公式](其中 [公式][公式]),通过卷积后输出feature map维度为 [公式],其中 [公式]是语义分割的类别数。最后通过reshape到 [公式]尺寸就可以了。不难看出,DUC的主要思想就是将整个label map划分成与输入的feature map等尺寸的子部分。所有的子部分被叠加 [公式]次就可以产生整个label map了。这种变化允许我们直接作用在输出的feature map上而不用像deconvolution和unpooling那样还需要一些额外的信息。

实验对比如下:

其中,DS:Downsampling rate of the network. Cell:neighborhood region that one predicted pixel represents.

HDC

HDC主要是为了解决使用dilated convolution会产生的“gridding issue”。

当dilated convolution在高层使用的rate变大时,对输入的采样将变得很稀疏,将不利于学习——因为一些局部信息完全丢失了,而长距离上的一些信息可能并不相关;并且gridding效应可能会打断局部信息之间的连续性。

第一行是ground truth,第二行是gridding现象,第三行是使用HDC后的输出

所以,文章提出了HDC——使用一系列的dilation rates而不是只用相同的rate,并且使用ResNet-101中blocks的方式连接它们。具体展示如下:

a:所有的卷积层都使用dilation rate [公式]

b:连续的卷积层使用dilation rates [公式]

从这也可看出,HDC还有一个好处,可以增大网络的感受野。

实验对比如下:

RF是使用了HDC结构的,bigger是指HDC中使用的rates更大


论文地址: arxiv.org/pdf/1702.0850
  • 6
    点赞
  • 78
    收藏
    觉得还不错? 一键收藏
  • 11
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值