[卷积]空洞卷积的改进

本文介绍了空洞卷积的作用,如扩大感受野和捕获多尺度信息,以及其在语义分割和目标检测中的应用。讨论了空洞卷积的gridding问题及其解决方案,包括HDC、ASPP等方法,同时提到了训练技巧和空洞卷积的优化策略。
摘要由CSDN通过智能技术生成

[卷积]空洞卷积的改进

文章来源: https://zhuanlan.zhihu.com/p/50369448

从这几年的分割结果来看,基于空洞卷积的分割方法效果要好一些,为此,拿出两天时间来重新思考下空洞卷积问题。

- . -语义分割创新该怎么做呢。

引言

空洞卷积(Dilated/Atrous Convolution),广泛应用于语义分割与目标检测等任务中,语义分割中经典的deeplab系列与DUC对空洞卷积进行了深入的思考。目标检测中SSD与RFBNet,同样使用了空洞卷积。

  • 标准卷积:以3*3为例,以下分辨率不变与分辨率降低的两个实例;
v2-67486c18a5cd95e03dba3bd188f2b76d_hd.jpg
v2-f505060cb5d84e1a18e8be54eda77999_hd.jpg
  • 空洞卷积:在3*3卷积核中间填充0,有两种实现方式,第一,卷积核填充0,第二,输入等间隔采样。
v2-3b7e3ff7c10d01b661752a9b68be7469_hd.jpg

标准卷积与空洞卷积在实现上基本相同,标准卷积可以看做空洞卷积的特殊形式。看到这,空洞卷积应该不那么陌生了。。

空洞卷积的作用

空洞卷积有什么作用呢?

  • 扩大感受野:在deep net中为了增加感受野且降低计算量,总要进行降采样(pooling或s2/conv),这样虽然可以增加感受野,但空间分辨率降低了。为了能不丢失分辨率,且仍然扩大感受野,可以使用空洞卷积。这在检测,分割任务中十分有用。一方面感受野大了可以检测分割大目标,另一方面分辨率高了可以精确定位目标。
  • 捕获多尺度上下文信息:空洞卷积有一个参数可以设置dilation rate,具体含义就是在卷积核中填充dilation rate-1个0,因此,当设置不同dilation rate时,感受野就会不一样,也即获取了多尺度信息。多尺度信息在视觉任务中相当重要啊。

从这里可以看出,空洞卷积可以任意扩大感受野,且不需要引入额外参数,但如果把分辨率增加了,算法整体计算量肯定会增加。

空洞卷积感受野如何计算

说了这么多有关感受野的话,感受野究竟怎么计算呢?其实和标准卷积是一致的。

空洞卷积实际卷积核大小:

K=k+(k-1)(r-1),k为原始卷积核大小,r为空洞卷积参数空洞率;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值