1.框架及各层维度大小计算过程
借鉴了网友:AlexNet网络结构详解(含各层维度大小计算过程)与PyTorch实现-CSDN博客
2.代码:
#AlexNet通过暂退法( 4.6节)控制全连接层的模型复杂度,而LeNet只使用了权重衰减
#进一步扩充数据,AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。使模型更健壮,更大的样本量有效地减少了过拟合。
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
#使用一个11*11的更大窗口捕捉对象
#同时,步幅为4,以减少输出的高度和宽度
#输出通道的数目远大于LeNet
nn.Conv2d(1,96,kernel_size=11,stride=4,padding=1),nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=2),
#减小卷积窗口,使用填充为2使得输入与输出的高和宽一致,且增大输出通道数
nn.Conv2d(96,256,kernel_size=5,padding=2),nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=2),
#使用三个连续的卷积层和较小的卷积窗口
#除了最后的卷积层,输出通道的数量进一步增加
#在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
nn.Conv2d(256,384,kernel_size=3,padding=1),nn.ReLU(),
nn.Conv2d(384,384,kernel_size=3,padding=1),nn.ReLU(),
nn.Conv2d(384,256,kernel_size=3,padding=1),nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=2),
nn.Flatten(),
#全连接层的输出数量是LeNet中的好几倍。使用dropout层减轻过拟合
nn.Linear(6400,4096),nn.ReLU(),
nn.Dropout(p = 0.5),
nn.Linear(4096,4096),nn.ReLU(),
nn.Dropout(p = 0.5),
#最后是输出层 ,使用Fashion-MNIST,类别是10,非论文中的10000
nn.Linear(4096,10)
)
'''
X = torch.randn(1,1,224,224)
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t',X.shape)
'''
batch_size = 128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)
lr,num_epochs = 0.01,10
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
d2l.plt.show()
3.过程
(224-11+4)\ 4 =54余......