李沐-动手学深度学习AlexNet

1.框架及各层维度大小计算过程

借鉴了网友:AlexNet网络结构详解(含各层维度大小计算过程)与PyTorch实现-CSDN博客

2.代码:

#AlexNet通过暂退法( 4.6节)控制全连接层的模型复杂度,而LeNet只使用了权重衰减
#进一步扩充数据,AlexNet在训练时增加了大量的图像增强数据,如翻转、裁切和变色。使模型更健壮,更大的样本量有效地减少了过拟合。
import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    #使用一个11*11的更大窗口捕捉对象
    #同时,步幅为4,以减少输出的高度和宽度
    #输出通道的数目远大于LeNet
    nn.Conv2d(1,96,kernel_size=11,stride=4,padding=1),nn.ReLU(),
    nn.MaxPool2d(kernel_size=3,stride=2),
    #减小卷积窗口,使用填充为2使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96,256,kernel_size=5,padding=2),nn.ReLU(),
    nn.MaxPool2d(kernel_size=3,stride=2),
    #使用三个连续的卷积层和较小的卷积窗口
    #除了最后的卷积层,输出通道的数量进一步增加
    #在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256,384,kernel_size=3,padding=1),nn.ReLU(),
    nn.Conv2d(384,384,kernel_size=3,padding=1),nn.ReLU(),
    nn.Conv2d(384,256,kernel_size=3,padding=1),nn.ReLU(),
    nn.MaxPool2d(kernel_size=3,stride=2),
    nn.Flatten(),
    #全连接层的输出数量是LeNet中的好几倍。使用dropout层减轻过拟合
    nn.Linear(6400,4096),nn.ReLU(),
    nn.Dropout(p = 0.5),
    nn.Linear(4096,4096),nn.ReLU(),
    nn.Dropout(p = 0.5),
    #最后是输出层 ,使用Fashion-MNIST,类别是10,非论文中的10000
    nn.Linear(4096,10)
)


'''
X = torch.randn(1,1,224,224)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)
'''

batch_size = 128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)

lr,num_epochs = 0.01,10
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
d2l.plt.show()

3.过程

(224-11+4)\  4 =54余......

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值