生成函数——OGF学习笔记

背景:

OZY \text{OZY} OZY师兄来 diss \text{diss} diss我们了。
EGF \text{EGF} EGF学习笔记详见:生成函数—— EGF \text{EGF} EGF学习笔记



一些定义:

好像没什么用?
级数: 级数是指将一个无穷数列 的项依次用加号连接起来的函数。
n → ∞ , f n → 0 n→\infty,f_n→0 n,fn0时,则称级数收敛,否则称计数发散。在级数求和中,最后的结果可能是一个具体数值,也可能是一个函数。
幂级数: 形如 ∑ n = 0 ∞ a n ( x − x 0 ) n \sum_{n=0}^{\infty}a_n(x-x_0)^n n=0an(xx0)n的即为幂级数。
其中 x 0 x_0 x0是一个常数, a 0 , a 1 , a 2 . . . a n a_0,a_1,a_2...a_n a0,a1,a2...an是这个幂级数的系数
形式幂级数: 可以看做也是不讨论幂级数敛散性,也就是将其中的不定元 x x x仅仅看作是一个代数对象,而不是任何具体数值的时候写出的幂级数。生成函数就是一种形式幂级数,因此不需要考虑它是否收敛。



生成函数定义:

OGF \text{OGF} OGF:定义 f x = ∑ i = 0 n a i x i f_x=\sum_{i=0}^{n}a_ix^i fx=i=0naixi为这个序列的普通生成函数( a i a_i ai为常数)。



常见的 OGF \text{OGF} OGF

∑ i = 0 n x i = x n + 1 − 1 x − 1 = 1 − x n + 1 x − 1 \sum_{i=0}^{n}x^i=\frac{x^{n+1}-1}{x-1}=\frac{1-x^{n+1}}{x-1} i=0nxi=x1xn+11=x11xn+1
x → 0 x→0 x0,有:
∑ i = 0 ∞ x i = 1 − x ∞ 1 − x = 1 1 − x ∑ i = 0 ∞ a i x i = 1 1 − a x ∑ i = 0 ∞ ( i + 1 ) x i = 1 ( 1 − x ) 2 ∑ i = 0 ∞ ( − 1 ) i x i = 1 1 + x \begin{aligned}&\sum_{i=0}^{\infty}x^i=\frac{1-x^{\infty}}{1-x}=\frac{1}{1-x}\\ &\sum_{i=0}^{\infty}a^ix^i=\frac{1}{1-ax}\\ &\sum_{i=0}^{\infty}(i+1)x^i=\frac{1}{(1-x)^2}\\ &\sum_{i=0}^{\infty}(-1)^ix^i=\frac{1}{1+x}\end{aligned} i=0xi=1x1x=1x1i=0aixi=1ax1i=0(i+1)xi=(1x)21i=0(1)ixi=1+x1
然而像因式分解一样,我们必须掌握其相反的形式。
1 1 − x = ∑ i = 0 ∞ a i x i 1 ( 1 − x ) m = ∑ n ∈ N + C n + m − 1 m − 1 x n 1 ( 1 − a x ) m = ∑ n ∈ N + C n + m − 1 m − 1 a n x n \begin{aligned}&\frac{1}{1-x}=\sum_{i=0}^{\infty}a^ix^i\\ &\frac{1}{(1-x)^m}=\sum_{n∈N_+}C_{n+m-1}^{m-1}x^n\\ &\frac{1}{(1-ax)^m}=\sum_{n∈N_+}C_{n+m-1}^{m-1}a^nx^n\end{aligned} 1x1=i=0aixi(1x)m1=nN+Cn+m1m1xn(1ax)m1=nN+Cn+m1m1anxn

证明一个有用的结论( 1 ( 1 − x ) m = ( ∑ i = 0 ∞ x i ) m = ∑ n ∈ N + C n + m − 1 m − 1 x n \frac{1}{(1-x)^m}=(\sum_{i=0}^{\infty}x^i)^m=\sum_{n∈N_+}C_{n+m-1}^{m-1}x^n (1x)m1=(i=0xi)m=nN+Cn+m1m1xn):
我们知道多项式乘法的本质是一位一位相乘,最后相加,因此对于可以构成 x n x_n xn的我们可以写成如下形式: ∑ i = 1 m A i = n \sum_{i=1}^{m}A_i=n i=1mAi=n,其中的 A i A_i Ai表示你在第 i i i个不等式选了 A i A_i Ai作为 x x x的指数。
解决的方式当然是插板法,故最后的答案为 C n + m − 1 m − 1 C_{n+m-1}^{m-1} Cn+m1m1
下面的一条同理,只是加上一个系数。



二项式定理与广义二项式定理:

二项式定理: ( x + y ) n = ∑ k = 0 n ( k n ) x n − k y k (x+y)^n=\sum_{k=0}^{n}(_{k}^{n})x^{n-k}y^{k} (x+y)n=k=0n(kn)xnkyk

其中 ( k n ) = C n k = n ! k ! ( n − k ) ! (_{k}^{n})=C_{n}^{k}=\frac{n!}{k!(n-k)!} (kn)=Cnk=k!(nk)!n!是组合数。


n n n不为非负整数时, k k k取不到 n n n,设 α \alpha α为任意实数,因此有:
广义二项式定理: ( x + y ) α = ∑ k = 0 ∞ ( k α ) x α − k y k (x+y)^{\alpha}=\sum_{k=0}^{\infty}(_{k}^{\alpha})x^{\alpha-k}y^{k} (x+y)α=k=0(kα)xαkyk
其中 ( k α ) = α ( α − 1 ) ( α − 2 ) . . . ( α − k + 1 ) k ! (_{k}^{\alpha})=\frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-k+1)}{k!} (kα)=k!α(α1)(α2)...(αk+1)是形式意义上的组合数。
证明不会。



一些例题:

T1 \text{T1} T1

que \text{que} que
三种硬币,面值为 1 , 2 , 5 1,2,5 1,2,5,每种各有 a , b , c a,b,c a,b,c个,求不能组成的最小的面值。

sol \text{sol} sol
而在这一题,假设当前硬币的面值为 1 1 1,那么可以用 x 2 , x 3 , . . . , x a x^2,x^3,...,x^a x2,x3,...,xa来表示这 a a a个硬币,同理 x , x 2 , x 4 , . . . , x 2 b x,x^2,x^4,...,x^{2b} x,x2,x4,...,x2b表示面值为 2 2 2的, x 5 , x 10 , x 15 , . . . , x 5 c x^5,x^{10},x^{15},...,x^{5c} x5,x10,x15,...,x5c来表示面值为 5 5 5的。
由于我们可以在当前方案中不选一种或两种硬币,因此用常数 1 = x 0 1=x_0 1=x0来表示当前不选。因此这三种的生成函数分别是: ∑ i = 0 a x i , ∑ i = 0 b x 2 i , ∑ i = 0 c x 5 i \sum_{i=0}^{a}x^i,\sum_{i=0}^{b}x^{2i},\sum_{i=0}^{c}x^{5i} i=0axi,i=0bx2i,i=0cx5i,
最后乘在一起,即 ∑ i = 0 a x i ∑ i = 0 b x 2 i ∑ i = 0 c x 5 i \sum_{i=0}^{a}x^i\sum_{i=0}^{b}x^{2i}\sum_{i=0}^{c}x^{5i} i=0axii=0bx2ii=0cx5i,看看最小的为 0 0 0的系数是什么,其对应的位置就是最后答案。
为什么?考验我们对生成函数的理解。我们知道多项式乘法的本质是一位一位相乘,最后相加。因此,我们可以在认为其指数相加的和就是你选到的总面值( 1 1 1的指数为 1 1 1的倍数, 2 2 2的指数为 2 2 2的倍数, 5 5 5的指数为 5 5 5的倍数),判断当前面值是否出现就看前面的系数是否为 0 0 0即可。
有点感性,感性理解就好了。

T2 \text{T2} T2

que \text{que} que
现在有两个商店,价格为 i i i的物品,分别有 i i i件,问你在每个商店买一个物品,花费 n n n元有多少种方案。

sol \text{sol} sol
思路同 T1 \text{T1} T1,写出其生成函数为 ∑ i = 0 ∞ i x i \sum_{i=0}^{\infty}ix^i i=0ixi
∑ i = 0 ∞ i x i = ∑ i = 0 ∞ i ⋅ x ⋅ x i − 1 = x ∑ i = 0 ∞ i x i − 1 \sum_{i=0}^{\infty}ix^i=\sum_{i=0}^{\infty}i\cdot x\cdot x^{i-1}=x\sum_{i=0}^{\infty}ix_{i-1} i=0ixi=i=0ixxi1=xi=0ixi1
我们不用在意 x x x的值,因此另 x → 0 x→0 x0,套用上面的式子 ∑ i = 0 ∞ ( i + 1 ) x i = 1 ( 1 − x ) 2 \sum_{i=0}^{\infty}(i+1)x_i=\frac{1}{(1-x)^2} i=0(i+1)xi=(1x)21,得到结果为 x ( 1 − x ) 2 \frac{x}{(1-x)^2} (1x)2x
a n s = ( ∑ i = 0 ∞ x i ) 2 = [ x ( 1 − x ) 2 ] 2 = x 2 ( 1 − x ) 4 ans=(\sum_{i=0}^{\infty}x_i)^2=[\frac{x}{(1-x)^2}]^2=\frac{x^2}{(1-x)^4} ans=(i=0xi)2=[(1x)2x]2=(1x)4x2。因为我们只需要在乎其在第 n n n个位置的取值,而分子为 x 2 x^2 x2,相当于数列向右两位,因此 n n n代表 n − 2 n-2 n2,套回 1 ( 1 − x ) m = ∑ n ∈ N + C n + m − 1 m − 1 x n \frac{1}{(1-x)^m}=\sum_{n∈N_+}C_{n+m-1}^{m-1}x^n (1x)m1=nN+Cn+m1m1xn,即 m = 4 , m=4, m=4,因此结果为 C n − 2 + 4 − 1 4 − 1 = C n + 1 3 C_{n-2+4-1}^{4-1}=C_{n+1}^{3} Cn2+4141=Cn+13

T3 \text{T3} T3

que \text{que} que
悄悄告诉你 bzoj 3028 \text{bzoj}3028 bzoj3028权限题。
在这里插入图片描述

sol \text{sol} sol
其实还是同样的道理。
列出生成函数。
承德汉堡: ∑ i = 0 ∞ x 2 i \sum_{i=0}^{\infty}x^{2i} i=0x2i,由等比数列求和公式可推得 = 1 1 − x 2 =\frac{1}{1-x^2} =1x21
可乐: ∑ i = 0 1 x i = x 0 + x 1 = 1 + x \sum_{i=0}^{1}x^i=x^0+x^1=1+x i=01xi=x0+x1=1+x
鸡腿: ∑ i = 0 2 x i \sum_{i=0}^{2}x^i i=02xi,由等比数列求和公式可推得 = x 3 − 1 x − 1 =\frac{x^3-1}{x-1} =x1x31
蜜桃多: ∑ i = 0 ∞ x 2 i + 1 = ∑ i = 0 ∞ x 2 i ⋅ x = x ∑ i = 0 ∞ x 2 i = x 1 − x 2 \sum_{i=0}^{\infty}x^{2i+1}=\sum_{i=0}^{\infty}x^{2i}\cdot x=x\sum_{i=0}^{\infty}x^{2i}=\frac{x}{1-x^2} i=0x2i+1=i=0x2ix=xi=0x2i=1x2x
鸡块: ∑ i = 0 ∞ x 4 i \sum_{i=0}^{\infty}x^{4i} i=0x4i,由等比数列求和公式可推得 = 1 1 − x 4 =\frac{1}{1-x^4} =1x41
包子: ∑ i = 0 3 x i \sum_{i=0}^{3}x^i i=03xi,由等比数列求和公式可推得 = x 4 − 1 x − 1 =\frac{x^4-1}{x-1} =x1x41
土豆片炒肉: ∑ i = 0 1 x i = x 0 + x 1 = 1 + x \sum_{i=0}^{1}x^i=x^0+x^1=1+x i=01xi=x0+x1=1+x
面包: ∑ i = 0 ∞ x 3 i = 1 1 − x 3 \sum_{i=0}^{\infty}x^{3i}=\frac{1}{1-x^3} i=0x3i=1x31
最后全部乘在一起,化简得: x ( 1 − x ) 4 \frac{x}{(1-x)^4} (1x)4x
因为我们只需要在乎其在第 n n n个位置的取值,而分子为 x x x,相当于数列向右偏一位,因此 n n n代表 n − 1 n-1 n1,套回 1 ( 1 − x ) m = ∑ n ∈ N + C n + m − 1 m − 1 x n \frac{1}{(1-x)^m}=\sum_{n∈N_+}C_{n+m-1}^{m-1}x^n (1x)m1=nN+Cn+m1m1xn,即 m = 4 , m=4, m=4,因此结果为 C n − 1 + 4 − 1 4 − 1 = C n + 2 3 C_{n-1+4-1}^{4-1}=C_{n+2}^{3} Cn1+4141=Cn+23

T4 \text{T4} T4

que \text{que} que
a i = i 2 a_i=i^2 ai=i2的生成函数。

sol \text{sol} sol
我们设:
F ( x ) = ∑ i = 0 ∞ i 2 x i F(x)=\sum_{i=0}^{\infty}i^2x^i F(x)=i=0i2xi

则有:
x ⋅ F ( x ) = x ⋅ ∑ i = 0 ∞ i 2 x i = ∑ i = 0 ∞ i 2 x i + 1 x\cdot F(x)=x\cdot\sum_{i=0}^{\infty}i^2x^i=\sum_{i=0}^{\infty}i^2x^{i+1} xF(x)=xi=0i2xi=i=0i2xi+1

由于 F ( 0 ) = 0 F(0)=0 F(0)=0,因此我们可以向右平移一位。
F ( x ) = ∑ i = 1 ∞ i 2 x i x ⋅ F ( x ) = ∑ i = 1 ∞ ( i − 1 ) 2 x i \begin{aligned}F(x)&=\sum_{i=1}^{\infty}i^2x^i\\ x\cdot F(x)&=\sum_{i=1}^{\infty}(i-1)^2x^{i}\end{aligned} F(x)xF(x)=i=1i2xi=i=1(i1)2xi

两式相减,有:
( 1 − x ) ⋅ F ( x ) = ∑ i = 1 ∞ ( i 2 − ( i − 1 ) 2 ) x i ( 1 − x ) ⋅ F ( x ) = ∑ i = 1 ∞ ( 2 i − 1 ) x i ( 1 − x ) ⋅ F ( x ) = ∑ i = 1 ∞ 2 i x i − ∑ i = 1 ∞ x i ( 1 − x ) ⋅ F ( x ) = 2 x ∑ i = 1 ∞ i x i − 1 − ( ∑ i = 0 ∞ x i − x 0 ) ( 1 − x ) ⋅ F ( x ) = 2 x ∑ i = 1 ∞ ( i + 1 ) x i − ( 1 x − 1 − 1 ) ( 1 − x ) ⋅ F ( x ) = 2 x ⋅ 1 ( 1 − x ) 2 − x 1 − x ( 1 − x ) ⋅ F ( x ) = x ( x + 1 ) ( 1 − x ) 2 F ( x ) = x ( x + 1 ) ( 1 − x ) 3 \begin{aligned}(1-x)\cdot F(x)&=\sum_{i=1}^{\infty}(i^2-(i-1)^2)x^i\\ (1-x)\cdot F(x)&=\sum_{i=1}^{\infty}(2i-1)x^i\\ (1-x)\cdot F(x)&=\sum_{i=1}^{\infty}2ix^i-\sum_{i=1}^{\infty}x^i\\ (1-x)\cdot F(x)&=2x\sum_{i=1}^{\infty}ix^{i-1}-(\sum_{i=0}^{\infty}x^i-x^0)\\ (1-x)\cdot F(x)&=2x\sum_{i=1}^{\infty}(i+1)x^{i}-(\frac{1}{x-1}-1)\\ (1-x)\cdot F(x)&=2x\cdot\frac{1}{(1-x)^2}-\frac{x}{1-x}\\ (1-x)\cdot F(x)&=\frac{x(x+1)}{(1-x)^2}\\ F(x)&=\frac{x(x+1)}{(1-x)^3}\end{aligned} (1x)F(x)(1x)F(x)(1x)F(x)(1x)F(x)(1x)F(x)(1x)F(x)(1x)F(x)F(x)=i=1(i2(i1)2)xi=i=1(2i1)xi=i=12ixii=1xi=2xi=1ixi1(i=0xix0)=2xi=1(i+1)xi(x111)=2x(1x)211xx=(1x)2x(x+1)=(1x)3x(x+1)

T5 \text{T5} T5

que \text{que} que
a 1 = 1 , a n + 1 = 2 a n + 3 n a_1=1,a_{n+1}=2a_n+3^n a1=1,an+1=2an+3n的生成函数和通项式。

sol \text{sol} sol
不妨整体左移一位,使得 a 0 = 1 a_0=1 a0=1
设生成函数为 F F F
[ 1 ] [1] [1]:怎么解决 a n + 1 a_{n+1} an+1 a n a_{n} an解决过来的问题呢。
我们考虑到 x F xF xF的含义是将 F F F整体右移一位,与 a n + 1 = a n a_{n+1}=a_{n} an+1=an相符,再带上个系数 2 2 2,问题貌似解决了。
[ 2 ] [2] [2]:怎么解决 3 n 3^{n} 3n
我们有这样一条式子, ∑ i = 0 ∞ a i x i = 1 1 − a x \sum_{i=0}^{\infty}a^ix^i=\frac{1}{1-ax} i=0aixi=1ax1,因此当 a = 3 a=3 a=3时,前面的系数为 3 i 3^i 3i,满足我们对 3 n 3^{n} 3n的需要。我们在后面加上个 1 1 − 3 x \frac{1}{1-3x} 13x1,问题貌似解决了。
[ 2 ] [2] [2]:怎么解决向右平移一位后 F ( 0 ) = a 0 F(0)=a_0 F(0)=a0的问题。
x = 0 x=0 x=0时, 1 1 − 3 x = 1 \frac{1}{1-3x}=1 13x1=1,而 F ( 0 ) = a 0 = 1 F(0)=a_0=1 F(0)=a0=1,貌似没有问题。

因此我们有:
F = 2 x F + 1 1 − 3 x F = 1 ( 1 − 2 x ) ( 1 − 3 x ) \begin{aligned}F&=2xF+\frac{1}{1-3x}\\ F&=\frac{1}{(1-2x)(1-3x)}\end{aligned} FF=2xF+13x1=(12x)(13x)1

裂项一下,我们有:
F = x ( 1 1 − 3 x − 1 1 − 2 x ) F=x\left(\frac{1}{1-3x}-\frac{1}{1-2x}\right) F=x(13x112x1)
我们有这样一条式子, ∑ i = 0 ∞ a i x i = 1 1 − a x \sum_{i=0}^{\infty}a^ix^i=\frac{1}{1-ax} i=0aixi=1ax1,因此 a a a分别为 3 , 2 3,2 3,2,带入回去,得到:
F [ x n ] = x ( 3 n − 2 n ) F[x^n]=x\left(3^n-2^n\right) F[xn]=x(3n2n)

x x x相当于向右移一位,因此 n n n代表 n − 1 n-1 n1,所以:
F [ x n ] = 3 n − 1 − 2 n − 1 F[x^{n}]=3^{n-1}-2^{n-1} F[xn]=3n12n1
因为一开始你的 a a a整体左移了一位,因此把 n n n当做 n + 1 n+1 n+1即可。
因此最后的结果就是: 3 n − 2 n 3^n-2^n 3n2n

T6 \text{T6} T6

que \text{que} que
Catalan number \text{Catalan number} Catalan number的生成函数和通项式。

sol \text{sol} sol
F ( x ) = ∑ n = 0 ∞ ( [ n = 0 ] + ∑ i = 0 n − 1 f i f n − i − 1 ) x n F(x)=\sum_{n=0}^{\infty}\left([n=0]+\sum_{i=0}^{n-1}f_if_{n-i-1}\right)x^n F(x)=n=0([n=0]+i=0n1fifni1)xn

n = 0 n=0 n=0时, [ n = 0 ] [n=0] [n=0]才会对 x n x^n xn产生贡献( [ n = 0 ] x n = 1 ∗ 1 = 1 [n=0]x^n=1*1=1 [n=0]xn=11=1),而此时 ∑ i = 0 n − 1 f i f n − i − 1 = 0 \sum_{i=0}^{n-1}f_if_{n-i-1}=0 i=0n1fifni1=0,因此可以提出,得:

F ( x ) = 1 + ∑ n = 1 ∞ ( ∑ i = 0 n − 1 f i f n − i − 1 ) x n F ( x ) = 1 + x ∑ n = 0 ∞ ( ∑ i = 0 n − 1 f i f n − i − 1 ⋅ x i x n − 1 − i ) F ( x ) = 1 + x ∑ n = 0 ∞ ( ∑ i = 0 n − 1 f i x i ⋅ f n − i − 1 x n − 1 − i ) \begin{aligned}F(x)&=1+\sum_{n=1}^{\infty}\left(\sum_{i=0}^{n-1}f_if_{n-i-1}\right)x^n\\ F(x)&=1+x\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n-1}f_if_{n-i-1}\cdot x^{i}x^{n-1-i}\right)\\ F(x)&=1+x\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n-1}f_ix^{i}\cdot f_{n-i-1}x^{n-1-i}\right)\end{aligned} F(x)F(x)F(x)=1+n=1(i=0n1fifni1)xn=1+xn=0(i=0n1fifni1xixn1i)=1+xn=0(i=0n1fixifni1xn1i)

容易发现里面是一个卷积的形式,因此有:
F ( x ) = 1 + x F 2 ( x ) F(x)=1+xF^2(x) F(x)=1+xF2(x)

解得:
F ( x ) = 1 ± 1 − 4 x 2 x F(x)=\frac{1±\sqrt{1-4x}}{2x} F(x)=2x1±14x

x = 0 x=0 x=0时, F ( x ) = 2 0 , F ( x ) = 0 0 F(x)=\frac{2}{0},F(x)=\frac{0}{0} F(x)=02,F(x)=00
因为 F ( 0 ) = 0 F(0)=0 F(0)=0,因此舍去前者,取后者。
故:
F ( x ) = 1 − 1 − 4 x 2 x F(x)=\frac{1-\sqrt{1-4x}}{2x} F(x)=2x114x

怎么展开?
1 − 4 x = ( 1 − 4 x ) 1 2 \sqrt{1-4x}=(1-4x)^{\frac{1}{2}} 14x =(14x)21

套入广义二项式定理: ( x + y ) α = ∑ k = 0 ∞ α ( α − 1 ) ( α − 2 ) . . . ( α − k + 1 ) k ! x n − k y k (x+y)^{\alpha}=\sum_{k=0}^{\infty}\frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-k+1)}{k!}x^{n-k}y^{k} (x+y)α=k=0k!α(α1)(α2)...(αk+1)xnkyk,即此时 α = 1 2 , x = 1 , y = − 4 x \alpha=\frac{1}{2},x=1,y=-4x α=21,x=1,y=4x得:
( 1 − 4 x ) 1 2 = ∑ k = 0 ∞ 1 2 ( 1 2 − 1 ) ( 1 2 − 2 ) . . . ( 1 2 − k + 1 ) k ! 1 n − k ( − 4 x ) k (1-4x)^{\frac{1}{2}}=\sum_{k=0}^{\infty}\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)...(\frac{1}{2}-k+1)}{k!}{1}^{n-k}(-4x)^{k} (14x)21=k=0k!21(211)(212)...(21k+1)1nk(4x)k

上下同时乘上 2 k 2^k 2k,且上面的 2 k 2^k 2k平均分到这 k k k个项中,得到:
( 1 − 4 x ) 1 2 = ∑ k = 0 ∞ 1 ( 1 − 2 ) ( 1 − 4 ) . . . ( 1 − 2 k + 2 ) 2 k k ! ( − 4 x ) k (1-4x)^{\frac{1}{2}}=\sum_{k=0}^{\infty}\frac{1(1-2)(1-4)...(1-2k+2)}{2^kk!}(-4x)^{k} (14x)21=k=02kk!1(12)(14)...(12k+2)(4x)k

上面提取 k − 1 k-1 k1 − 1 -1 1(除了第 1 1 1项,均提取一个),得:
( 1 − 4 x ) 1 2 = ∑ k = 0 ∞ ( − 1 ) k − 1 1 ∗ 1 ∗ 3 ∗ . . . ∗ ( 2 k − 3 ) 2 k k ! ( − 4 x ) k ( 1 − 4 x ) 1 2 = ∑ k = 0 ∞ ( − 1 ) k − 1 1 ∗ 3 ∗ . . . ∗ ( 2 k − 3 ) 2 k k ! ( − 4 x ) k \begin{aligned}(1-4x)^{\frac{1}{2}}&=\sum_{k=0}^{\infty}\frac{(-1)^{k-1}1*1*3*...*(2k-3)}{2^kk!}(-4x)^{k}\\ (1-4x)^{\frac{1}{2}}&=\sum_{k=0}^{\infty}\frac{(-1)^{k-1}1*3*...*(2k-3)}{2^kk!}(-4x)^{k}\end{aligned} (14x)21(14x)21=k=02kk!(1)k1113...(2k3)(4x)k=k=02kk!(1)k113...(2k3)(4x)k

上下同时乘上 2 ∗ 4 ∗ 6 ∗ . . . ∗ ( 2 k − 2 ) 2*4*6*...*(2k-2) 246...(2k2),则上面变成 1 ∗ 2 ∗ 3 ∗ . . . ∗ ( 2 k − 2 ) = ( 2 k − 2 ) ! 1*2*3*...*(2k-2)=(2k-2)! 123...(2k2)=(2k2)!,下面提取一个 2 2 2,相当于乘上 2 k − 1 ∗ 2 ∗ 3 ∗ . . . ∗ ( k − 1 ) = 2 k − 1 ∗ ( k − 1 ) ! 2^{k-1}*2*3*...*(k-1)=2^{k-1}*(k-1)! 2k123...(k1)=2k1(k1)!得:

( 1 − 4 x ) 1 2 = ∑ k = 0 ∞ ( − 1 ) k − 1 ( 2 k − 2 ) ! 2 k ∗ 2 k − 1 ⋅ ( k − 1 ) ! k ! ( − 4 x ) k ( 1 − 4 x ) 1 2 = ∑ k = 0 ∞ ( − 1 ) k − 1 ( 2 k − 2 ) ! 2 2 k − 1 ( k − 1 ) ! k ! ( − 2 2 x ) k ( 1 − 4 x ) 1 2 = ∑ k = 0 ∞ ( − 1 ) k − 1 ( 2 k − 2 ) ! 2 2 k − 1 ( k − 1 ) ! k ! ⋅ ( − 1 ) k ⋅ 2 2 k x k \begin{aligned}(1-4x)^{\frac{1}{2}}&=\sum_{k=0}^{\infty}\frac{(-1)^{k-1}(2k-2)!}{2^k*2^{k-1}\cdot (k-1)!k!}(-4x)^{k}\\ (1-4x)^{\frac{1}{2}}&=\sum_{k=0}^{\infty}\frac{(-1)^{k-1}(2k-2)!}{2^{2k-1}(k-1)!k!}(-2^2x)^{k}\\ (1-4x)^{\frac{1}{2}}&=\sum_{k=0}^{\infty}\frac{(-1)^{k-1}(2k-2)!}{2^{2k-1}(k-1)!k!}\cdot(-1)^k\cdot2^{2k}x^{k}\end{aligned} (14x)21(14x)21(14x)21=k=02k2k1(k1)!k!(1)k1(2k2)!(4x)k=k=022k1(k1)!k!(1)k1(2k2)!(22x)k=k=022k1(k1)!k!(1)k1(2k2)!(1)k22kxk

约分,得:
( 1 − 4 x ) 1 2 = ∑ k = 0 ∞ 2 ( − 1 ) 2 k − 1 ( 2 k − 2 ) ! ( k − 1 ) ! k ! x k (1-4x)^{\frac{1}{2}}=\sum_{k=0}^{\infty}2\frac{(-1)^{2k-1}(2k-2)!}{(k-1)!k!}x^{k} (14x)21=k=02(k1)!k!(1)2k1(2k2)!xk

因为 2 k − 1 2k-1 2k1一定为奇数,所以 ( − 1 ) 2 k − 1 = − 1 (-1)^{2k-1}=-1 (1)2k1=1
( 1 − 4 x ) 1 2 = − ∑ k = 0 ∞ 2 ( 2 k − 2 ) ! ( k − 1 ) ! k ! x k (1-4x)^{\frac{1}{2}}=-\sum_{k=0}^{\infty}2\frac{(2k-2)!}{(k-1)!k!}x^{k} (14x)21=k=02(k1)!k!(2k2)!xk

带回 F ( x ) = 1 − 1 − 4 x 2 x F(x)=\frac{1-\sqrt{1-4x}}{2x} F(x)=2x114x ,得:
F ( x ) = 1 − ( − ∑ k = 0 ∞ 2 ( 2 k − 2 ) ! ( k − 1 ) ! k ! x k ) 2 x F ( x ) = 1 + ∑ k = 0 ∞ 2 ( 2 k − 2 ) ! ( k − 1 ) ! k ! x k 2 x \begin{aligned}F(x)&=\frac{1-(-\sum_{k=0}^{\infty}2\frac{(2k-2)!}{(k-1)!k!}x^{k})}{2x}\\ F(x)&=\frac{1+\sum_{k=0}^{\infty}2\frac{(2k-2)!}{(k-1)!k!}x^{k}}{2x}\end{aligned} F(x)F(x)=2x1(k=02(k1)!k!(2k2)!xk)=2x1+k=02(k1)!k!(2k2)!xk

因为 F ( 0 ) = 1 F(0)=1 F(0)=1,不妨丢掉它,得:

F ( x ) = 1 + ∑ k = 1 ∞ 2 ( 2 k − 2 ) ! ( k − 1 ) ! k ! x k − 1 2 x F ( x ) = 2 ∑ k = 1 ∞ ( 2 k − 2 ) ! ( k − 1 ) ! k ! x k 2 x F ( x ) = ∑ k = 1 ∞ ( 2 k − 2 ) ! ( k − 1 ) ! k ! x k − 1 \begin{aligned}F(x)&=\frac{1+\sum_{k=1}^{\infty}2\frac{(2k-2)!}{(k-1)!k!}x^{k}-1}{2x}\\ F(x)&=\frac{2\sum_{k=1}^{\infty}\frac{(2k-2)!}{(k-1)!k!}x^{k}}{2x}\\ F(x)&=\sum_{k=1}^{\infty}\frac{(2k-2)!}{(k-1)!k!}x^{k-1}\end{aligned} F(x)F(x)F(x)=2x1+k=12(k1)!k!(2k2)!xk1=2x2k=1(k1)!k!(2k2)!xk=k=1(k1)!k!(2k2)!xk1

整体右移一位,即 k k k表示 k + 1 k+1 k+1得:
F ( x ) = ∑ k = 1 ∞ ( 2 k ) ! k ! ( k + 1 ) ! x k F(x)=\sum_{k=1}^{\infty}\frac{(2k)!}{k!(k+1)!}x^{k} F(x)=k=1k!(k+1)!(2k)!xk

T7 \text{T7} T7

que \text{que} que
Fibonacci sequence \text{Fibonacci sequence} Fibonacci sequence的生成函数和通项式。

sol \text{sol} sol
f n = f n − 1 + f n − 2 , f 0 = 0 , f 1 = 1 , f 2 = 1 f_{n}=f_{n-1}+f_{n-2},f_0=0,f_1=1,f_2=1 fn=fn1+fn2,f0=0,f1=1,f2=1可得:
F = F x + F x 2 + x F=Fx+Fx^2+x F=Fx+Fx2+x

F = x 1 − x − x 2 F=\frac{x}{1-x-x^2} F=1xx2x

( 1 − x − x 2 ) (1-x-x^2) (1xx2)怎么因式分解呢?
待定系数法。
( 1 + a x ) ( 1 + b x ) = ( 1 − x − x 2 ) (1+ax)(1+bx)=(1-x-x^2) (1+ax)(1+bx)=(1xx2),解得 a = − 1 ± 5 2 , b = − 1 ∓ 5 2 a=-\frac{1±\sqrt{5}}{2},b=-\frac{1∓\sqrt{5}}{2} a=21±5 ,b=215 。我们随便取一个点都可以成立,因此有:
F = x ( 1 − 1 + 5 2 x ) ( 1 − 1 − 5 2 x ) F=\frac{x}{(1-\frac{1+\sqrt{5}}{2}x)(1-\frac{1-\sqrt{5}}{2}x)} F=(121+5 x)(1215 x)x

考虑裂项。
还是用待定系数法。
A 1 + a x + B 1 + b x = x ( 1 − 1 + 5 2 x ) ( 1 − 1 − 5 2 x ) \frac{A}{1+ax}+\frac{B}{1+bx}=\frac{x}{(1-\frac{1+\sqrt{5}}{2}x)(1-\frac{1-\sqrt{5}}{2}x)} 1+axA+1+bxB=(121+5 x)(1215 x)x,解得: A = 1 5 , B = − 1 5 A=\frac{1}{\sqrt{5}},B=-\frac{1}{\sqrt{5}} A=5 1,B=5 1,因此有:
F = 1 5 1 − 1 + 5 2 x + − 1 5 1 − 1 − 5 2 x F=\frac{\frac{1}{\sqrt{5}}}{1-\frac{1+\sqrt{5}}{2}x}+\frac{-\frac{1}{\sqrt{5}}}{1-\frac{1-\sqrt{5}}{2}x} F=121+5 x5 1+1215 x5 1

F = 1 5 ( 1 1 − 1 + 5 2 x − 1 1 − 1 − 5 2 x ) F=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\frac{1+\sqrt{5}}{2}x}-\frac{1}{1-\frac{1-\sqrt{5}}{2}x}\right) F=5 1(121+5 x11215 x1)
因为 ∑ i = 0 ∞ a i x i = 1 1 − a x \sum_{i=0}^{\infty}a^ix^i=\frac{1}{1-ax} i=0aixi=1ax1,带入得:
[ x n ] F = 1 5 ( ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ) [x^n]F=\frac{1}{\sqrt{5}}\left((\frac{1+\sqrt{5}}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}\right) [xn]F=5 1((21+5 )n(215 )n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值