机器学习之线性回归

关于线性回归的更多内容:Linear Models

一 线性回归简介

1.1 定义

回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系

公式
在这里插入图片描述

1.2 线性回归分类

线性关系{ 单变量线性关系,多变量线性关系 }

非线性关系

二 损失函数及优化方法

2.1 损失函数(最小二乘法)

在这里插入图片描述
h(x)为预测值,y为真实值,预测值减去真实值的平方求和

J(w)越小越好,越接近真实值

2.2 正规方程优化算法

(1)公式

在这里插入图片描述

(2)推导过程

在这里插入图片描述
h(x) = Xw-y,求解最小w,对上述公式求导:
在这里插入图片描述

2.3 梯度下降优化算法

(1)梯度定义

单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率

在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向

(2)梯度下降公式

在这里插入图片描述
参数:
α:学习率或者步长,α不能太大也不能太小,太小的话,找到最低点的时间太长,太大的话,会导致错过最低点
负号:梯度方向是上升最快方向,负号就是下降最快方向

小结
正规方程:LinearRegression(不能解决拟合问题)
开发中,我们使用梯度下降法更多

2.4 一些梯度下降算法

(1)全梯度下降算法(FG)

在更新参数时使用所有的样本来进行更新。

(2)随机梯度下降算法(SG)

每次只代入计算一个样本目标函数的梯度来更新权重,再取下一个样本重复此过程

(3)小批量梯度下降算法(mini-batch)

每次从训练样本集上随机抽取一个小样本集

(4)随机平均梯度下降算法(SAG)

在内存中为每一个样本都维护一个旧的梯度,随机选择第i个样本来更新此样本的梯度,其他样本的梯度保持不变,然后求得所有梯度的平均值

三 线性回归API

3.1 正规方程

sklearn.linear_model.LinearRegression(fit_intercept=True)

参数
fit_intercept:是否计算偏置

属性
LinearRegression.coef_:回归系数
LinearRegression.intercept_:偏置

回归系数和偏置:
y = kx + b
其中k是回归系数,b是偏置

3.2 梯度下降

sklearn.linear_model.SGDRegressor(loss=“squared_loss”, fit_intercept=True, learning_rate =‘invscaling’, eta0=0.01)

参数
loss:损失类型,”squared_loss”: 普通最小二乘法
fit_intercept:是否计算偏置
learning_rate : 学习率α
‘constant’: 常数
‘optimal’: 学习率会随着迭代次数的增加发生改变
‘invscaling’: 学习率会随着迭代次数的增加发生改变

属性:
SGDRegressor.coef_:回归系数
SGDRegressor.intercept_:偏置

四 线性回归模型评估

均方误差(Mean Squared Error)MSE)评价:
在这里插入图片描述

sklearn.metrics.mean_squared_error(y_true, y_pred)

参数:
y_true:真实值
y_pred:预测值
返回值:
均方误差:MSE

from sklearn.metrics import mean_squared_error
# 5.模型评估
# 5.1 获取预测值和属性
y_predict = estimator.predict(x_test)
estimator.coef_
estimator.intercept_
# 5.2 评价
# 均方误差
error = mean_squared_error(y_test, y_predict)
# 注意:使用梯度下降法时,设置max_iter=1000
estimator = SGDRegressor(max_iter=1000)

五 过拟合和欠拟合

5.1 过拟合

训练集上表现好,测试集上表现不好

解决方法
1)添加其他特征项
2)添加多项式特征,如添加二次项或者三次项使模型泛化能力更强

5.2 欠拟合

训练集和测试集上都表现不好

解决方法
1)重新清洗数据
2)增大数据的训练量
3)正则化
4)减少特征维度

5.3 正则化

正则化:在算法学习时尽量减少高次项特征的影响

L1正则化:

可以使得其中一些W的值直接为0,删除这个特征的影响
代表:LASSO回归

L2正则化

可以使得其中一些W的都很小,都接近于0,削弱某个特征的影响
代表:Ridge回归(岭回归)

(1)岭回归—Ridge回归

损失函数:
增加一项惩罚力度
在这里插入图片描述

**岭回归的API
sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver=“auto”, normalize=False)

L2正则化
参数
alpha:正则化力度,也叫 λ,λ取值:0-1,1-10
solver:根据数据自动选择优化方法,一般是SAG(随机平均梯度下降算法)
normalize:数据是否进行标准化
normalize=True,在fit之前自动调用preprocessing.StandardScaler标准化数据

属性
Ridge.coef_:回归权重
Ridge.intercept_:回归偏置

from sklearn.linear_model import Ridge
# 4.机器学习-线性回归(岭回归)
estimator = Ridge(alpha=1)
sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)

可以进行交叉验证

# 交叉验证
estimator = RidgeCV(alphas=(0.1, 1, 10))
(2)Lasso 回归

损失函数:增加ℓ1范数。
在这里插入图片描述

from sklearn.linear_model import Lasso
(3)弹性网络—Elastic Net

对岭回归和Lasso回归中进行了折中

from sklearn.linear_model import ElasticNet

使用小结
岭回归 > 弹性网络(针对少部分特征数据) > Lasso回归

六 模型保存和加载

from sklearn.externals import joblib

保存:joblib.dump(estimator, ‘test.pkl’)
加载:estimator = joblib.load(‘test.pkl’)
注意:
1)保存文件的后缀名是.pkl
2)当模型的训练量非常大时,可以通过模型保存分批训练

# 4.1 模型训练
estimator = Ridge(alpha=1)
estimator.fit(x_train, y_train)

#  4.2 先进行模型训练,再保存模型
joblib.dump(estimator, "./data/test.pkl")

# 模型加载,通过estimator变量来承接
estimator = joblib.load("./data/test.pkl")

补充

  1. |x|为什么在0处不可导?
    函数 y=│x│是连续函数
    当x>0,sign(x)=1;
    当x=0,sign(x)=0;
    当x<0, sign(x)=-1
    在x= 0点处,其左导数为 lim[f(0+△x)-f(0)]/△x=[0-△x-0]/△x= -△x/△x=-1
    其右导数为 lim[f(0+△x)-f(0)]/△x=(0+△x-0)/△x= △x/△x=1
    在 x=0 处左右导数并不相等,所以 y=│x│在 x=0 处不可导

  2. 什么是sign()函数
    sign(x)叫做符号函数,其作用是取某个数的正负号,如y=│x│
    当x>0,sign(x)=1;
    当x=0,sign(x)=0;
    当x<0, sign(x)=-1

  3. Lasso 回归,由于绝对值在顶点处不可导,所以进行计算的过程中产生很多0,为什么???

转自:L1正则化引起稀疏解的多种解释
其中一篇比较简单的, 转自:L1正则为什么更容易获得稀疏解

  1. 泛化误差和经验误差
    经验误差(empirical error):也叫训练误差,模型在训练集上的误差。

泛化误差(generalization error):模型在新样本(测试集)上的误差。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性回归机器学习中的一种基本算法,梯度下降法是线性回归中常用的优化算法。下面是线性回归梯度下降法的实现步骤: 1.读取数据集,包括自变量和因变量。 2.初始化相关参数,包括学习率、迭代次数、截距和斜率等。 3.定义计算代价函数,常用的代价函数是均方误差(MSE)。 4.梯度下降,通过不断迭代更新截距和斜率,使得代价函数最小化。 5.执行梯度下降算法,得到最优的截距和斜率。 下面是Python代码实现: ```python import numpy as np # 读取数据集 def load_data(file_path): data = np.loadtxt(file_path, delimiter=',') x_data = data[:, :-1] y_data = data[:, -1] return x_data, y_data # 初始化相关参数 def init_params(): b = 0 k = 0 learning_rate = 0.01 num_iterations = 1000 return b, k, learning_rate, num_iterations # 定义计算代价函数 def compute_cost(b, k, x_data, y_data): total_error = 0 for i in range(len(x_data)): total_error += (y_data[i] - (k * x_data[i] + b)) ** 2 cost = total_error / float(len(x_data)) return cost # 梯度下降 def gradient_descent(b, k, x_data, y_data, learning_rate, num_iterations): m = float(len(x_data)) for i in range(num_iterations): b_gradient = 0 k_gradient = 0 for j in range(len(x_data)): b_gradient += (1/m) * ((k * x_data[j] + b) - y_data[j]) k_gradient += (1/m) * ((k * x_data[j] + b) - y_data[j]) * x_data[j] b = b - (learning_rate * b_gradient) k = k - (learning_rate * k_gradient) return b, k # 执行梯度下降算法 def linear_regression(file_path): x_data, y_data = load_data(file_path) b, k, learning_rate, num_iterations = init_params() print("Starting parameters: b = {0}, k = {1}, cost = {2}".format(b, k, compute_cost(b, k, x_data, y_data))) b, k = gradient_descent(b, k, x_data, y_data, learning_rate, num_iterations) print("After {0} iterations: b = {1}, k = {2}, cost = {3}".format(num_iterations, b, k, compute_cost(b, k, x_data, y_data))) # 调用线性回归函数 linear_regression('data.csv') ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值