机器学习之集成学习初识

一 集成学习简介

1.1 原理

生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。

1.2 任务

(1) 如何优化训练数据 —> 主要用于解决欠拟合问题 —> boosting
(2) 如何提升泛化性能 —> 主要用于解决过拟合问题 —> Bagging

二 Bagging和随机森林

2.1 Bagging

实现过程:

  1. 采样不同数据集
    2)训练分类器
    3)平权投票,获取最终结果
    4)主要实现过程小结

2.2 随机森林

随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定

2.3 包外估计(自助法)

在这里插入图片描述
数据集中有 36.8% 的数据抽取不到,可作为包外数据,可以用于基分类器的验证集。当基学习器是决策树时,可使用包外样本来辅助剪枝
包外估计是对集成分类器泛化误差的无偏估计(所有样本出现的概率一样)

2.4 随机森林API

sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)

n_estimators:决策树的个数,default = 10,可用交叉验证{120,200,300,500,800,1200}

Criterion:分割特征的测量方法,default =“gini”

*max_depth:树的最大深度,默认=无,可用交叉验证{5,8,15,25,30}
*max_features:每个决策树的最大特征数量,default=“auto”
If “auto”, then max_features=sqrt(n_features).
If “sqrt”, then max_features=sqrt(n_features)(same as “auto”).
If “log2”, then max_features=log2(n_features).
If None, then max_features=n_features.

bootstrap:是否在构建树时使用放回抽样,default = True,放回
*min_samples_split 内部节点再划分所需最小样本数,默认是2。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。
*min_samples_leaf 叶子节点的最小样本数,默认是1,一般来说,更偏向于将最小叶子节点数目设置为大于50
min_impurity_split: 节点划分最小不纯度,一般不推荐改动默认值1e-7

from sklearn.ensemble import RandomForestClassifier
estimator = RandomForestClassifier()
# 定义超参数的选择列表
param = {"n_estimators": [120,200,300,500,800], "max_depth": [5, 8, 15, 25]}
使用GridSearchCV进行网格搜索
# 超参数调优
estimator = GridSearchCV(estimator, param_grid=param, cv=3)
estimator.fit(x_train, y_train)

三 Boosting

每新加入一个弱学习器,整体能力就会得到提升
代表算法:Adaboost,GBDT,XGBoost,LightGBM

3.1 AdaBoost

  1. 初始化训练数据权重相等,训练第一个学习器。
  2. AdaBoost反复学习基本分类器,在每一轮m=1,2,…,Mm=1,2,…,M顺次的执行下列操作:
    (a) 在权值分布为Dt的训练数据上,确定基分类器;
    (b) 计算该学习器在训练数据中的错误率:
    (c) 计算该学习器的投票权重:
    (d) 根据投票权重,对训练数据重新赋权
    重复执行a到d步,m次;
  3. m个学习器进行加权投票
    在这里插入图片描述

API

from sklearn.ensemble import AdaBoostClassifier

3.2 GBDT

GBDT 的全称是 Gradient Boosting Decision Tree,梯度提升树
GBDT使用的决策树是CART回归树,无论是处理回归问题还是二分类以及多分类,使用的都是CART回归树。因为GBDT每次迭代要拟合的是梯度值,是连续值所以要用回归树。

流程
在这里插入图片描述
残差:真实值与预测值的差
负梯度:求导
在这里插入图片描述

补充

1.为什么要随机抽样训练集?  
如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的
2.为什么要有放回地抽样?
如果不是有放回的抽样,每次抽取样本的概率不同,也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决
3.bagging集成与boosting集成的区别?
(1)数据方面
Bagging:对数据进行采样训练;
Boosting:根据前一轮学习结果调整数据的重要性。
(2)投票方面
Bagging:所有学习器平权投票;
Boosting:对学习器进行加权投票。
(3)学习顺序
Bagging的学习是并行的,每个学习器没有依赖关系;
Boosting学习是串行,学习有先后顺序。
(4)主要作用
Bagging主要用于提高泛化性能(解决过拟合,也可以说降低方差)
Boosting主要用于提高训练精度 (解决欠拟合,也可以说降低偏差)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值