4.3 Consider an inventory problem similar to the problem of Section 4.2 (zero fixed cost). The only difference is that at the beginning of each period k k k the decision maker, in addition to knowing the current inventory level x k x_k xk, receives an accurate forecast that the demand w k w_k wk will be selected in accordance with one out of two possible probability distributions P ℓ , P s P_{\ell},P_s Pℓ,Ps (large demand, small demand). The a priori probability of a large demand forecast is known (d. Section 1.4).
(1) Obtain the optimal ordering policy for the case of a single-period problem.
(2) Extend the result to the N N N-period case.
(3) Extend the result to the case of any finite number of possible distributions.
Solution. (1) Assume the priori probability of P ℓ , P s P_{\ell},P_s Pℓ,Ps is   p ℓ , p s \,p_{\ell},p_s pℓ,ps respectively.
J 1 ( x 1 , y 1 ) = 0 J_1(x_1,y_1)=0 J1(x1,y1)=0 J 0 ( x 0 , y 0 ) = p s ⋅ min u 0 [ c u 0 + H ( x 0 + u 0 − w 0 ) ] + p ℓ ⋅ min u 0 [ c u 0 + H ( x 0 + u 0 − w 0 ) ] J_0(x_0,y_0)=p_s\cdot\min_{u_0}\left[cu_0+H(x_0+u_0-w_0)\right]+p_{\ell}\cdot\min_{u_0}\left[cu_0+H(x_0+u_0-w_0)\right] J0(x0,y0)=ps⋅u0min[cu0+H(x0+u0−w0)]+pℓ⋅u0min[cu0+H(x0+u0−w0)] = c u 0 + p ⋅ p s ( x 0 + u 0 − w 0 ) − h ⋅ p ℓ ( x 0 + u 0 − w 0 ) =cu_0+p\cdot p_s(x_0+u_0-w_0)-h\cdot p_{\ell}(x_0+u_0-w_0)\qquad\qquad =cu
Dynamic Programming and Optimal Control 第四章习题
最新推荐文章于 2025-03-26 10:05:42 发布