projection theorem

给定一个非零向量 x \mathbf{x} x, 考虑 内部优化问题( inner optimization problem)
min ⁡ R ∼ ( μ , Σ ) E [ u ( x ′ R ) ] \mathop{\min}\limits_{\mathbf{R}\sim(\mu,\Sigma)}E[u(x'\mathbf{R})] R(μ,Σ)minE[u(xR)] 其中 u u u 是效用函数。

显然,对于每个可行的随机变量 R ∼ ( μ , Σ ) \mathbf{R}\sim(\mu,\Sigma) R(μ,Σ),它对应的投射随机变量(projected random variable) r x = x ′ R \mathbf{r}_x=x'\mathbf{R} rx=xR 的均值为 μ x = x ′ μ \mu_x=x'\mu μx=xμ,方差为 σ x 2 = x ′ Σ x \sigma_x^2=x'\Sigma x σx2=xΣx。因此 r x \mathbf{r}_x rx min ⁡ r ∼ ( μ x , σ x 2 ) E [ u ( r ) ] \mathop{\min}\limits_{\mathbf{r}\sim(\mu_x,\sigma_x^2)}E[u(\mathbf{r})] r(μx,σx2)minE[u(r)] 的可行解,从而 min ⁡ R ∼ ( μ , Σ ) E [ u ( x ′ R ) ] ≥ min ⁡ r ∼ ( μ x , σ x 2 ) E [ u ( r ) ] \mathop{\min}\limits_{\mathbf{R}\sim(\mu,\Sigma)}E[u(x'\mathbf{R})]\ge \mathop{\min}\limits_{\mathbf{r}\sim(\mu_x,\sigma_x^2)}E[u(\mathbf{r})] R(μ,Σ)minE[u(xR)]r(μx,σx2)minE[u(r)]

Popescu的文章中证明了,不管 u u u 取何种效用函数,有:

投射定理. min ⁡ R ∼ ( μ , Σ ) E [ u ( x ′ R ) ] = min ⁡ r ∼ ( μ x , σ x 2 ) E [ u ( r ) ] \mathop{\min}\limits_{\mathbf{R}\sim(\mu,\Sigma)}E[u(x'\mathbf{R})] =\mathop{\min}\limits_{\mathbf{r}\sim(\mu_x,\sigma_x^2)}E[u(\mathbf{r})] R(μ,Σ)minE[u(xR)]=r(μx,σx2)minE[u(r)]

Remark. 这里 R R R 是个随机向量, r = x ′ R r=x'R r=xR 则变为一个随机值。所以,投射定理本质上就是说 将一个随机向量分布的优化问题投射到随机值分布上去

Example. [2] 中的定理2:给定 s 0 ∈ R , s ∈ R n , s ≠ 0 , α > 0 s_0\in\mathbb{R}, \mathbf{s}\in\mathbb{R}^n, \mathbf{s}\neq0,\alpha>0 s0R,sRn,s̸=0,α>0,那么存在 v 0 ∈ R , v ∈ R n , V ∈ S + n v_0\in\mathbb{R}, \mathbf{v}\in\mathbb{R}^n, \mathbf{V}\in\mathbb{S}_+^n v0R,vRn,VS+n 使得下面的约束条件成立
(1) v 0 + tr ( Σ V ) ≤ α    v_0 + \text{tr}(\mathbf{\Sigma}\mathbf{V})\leq \alpha\qquad\;\tag{1} v0+tr(ΣV)α(1) (2) [ v 0 − s 0 ( v − s ) ′ 2 v − s 2 V ] ∈ S + n \begin{bmatrix} v_0-s_0 & \frac{(\mathbf{v}-\mathbf{s})'}{2} \\ \frac{\mathbf{v}-\mathbf{s}}{2} & \mathbf{V} \end{bmatrix}\in\mathbb{S}_+^n\tag{2} [v0s02vs2(vs)V]S+n(2) (3) [ v 0 v ′ 2 v 2 V ] ∈ S + n    \begin{bmatrix} v_0 & \frac{\mathbf{v}'}{2} \\ \frac{\mathbf{v}}{2} & \mathbf{V} \end{bmatrix}\in\mathbb{S}_+^n\qquad\quad\;\tag{3} [v02v2vV]S+n(3) 当且仅当 (4) s ′ Σ s ≤ 4 α ( α − s 0 ) \mathbf{s}'\mathbf{\Sigma}\mathbf{s} \leq 4\alpha(\alpha-s_0)\tag{4} sΣs4α(αs0)(4)

此定理的证明,[2] 说可以用投射定理以及其它结果来证明,同时他给出了直接的证明。实际上,在接触到投射定理之前,我已经有了比较类似的直觉,这种直觉(或者说不严格的技巧)本质上就是投射定理。下面我们用这种直觉来处理上面的定理(这种直觉是应用投射定理的很好的途径)。

拉马努金似的证明(投射定理的本质)令
v = r s , V = t   s s ′ \mathbf{v}=r\mathbf{s}, \mathbf{V}=t\,\mathbf{s}\mathbf{s}' v=rs,V=tss 其中 t ≥ 0 t\ge 0 t0,这样就将 v , V \mathbf{v}, \mathbf{V} v,V 转换为两个实数变量 r , t r,t r,t

这样 (2 ) 变为
[ v 0 − s 0 r − 1 2 s ′ r − 1 2 s t   s s ′ ] ∈ S + n \begin{bmatrix} v_0-s_0 & \frac{r-1}{2}\mathbf{s}' \\ \frac{r-1}{2}\mathbf{s} & t\,\mathbf{s}\mathbf{s}' \end{bmatrix}\in\mathbb{S}_+^n [v0s02r1s2r1stss]S+n 由此可得到
(5) { v 0 ≥ s 0 r ≥ 1 t ≥ ( r − 1 ) 2 4 ( v 0 − s 0 ) \begin{cases} v_0\ge s_0 \\ r\ge 1 \\ t\ge \frac{(r-1)^2}{4(v_0-s_0)} \end{cases} \tag{5} v0s0r1t4(v0s0)(r1)2(5) 类似地,(3) 变为
[ v 0 r 2 s ′ r 2 s t   s s ′ ] ∈ S + n \begin{bmatrix} v_0 & \frac{r}{2}\mathbf{s}' \\ \frac{r}{2}\mathbf{s} & t\,\mathbf{s}\mathbf{s}' \end{bmatrix}\in\mathbb{S}_+^n [v02rs2rstss]S+n 可推得 (6) { v 0 ≥ 0 t ≥ r 2 4 v 0 \begin{cases} v_0\ge 0 \\ t\ge \frac{r^2}{4v_0} \end{cases} \tag{6} {v00t4v0r2(6) 进而我们有
(7) t ≥ 1 4 v 0 ≥ 1 4 α t\ge \frac{1}{4 v_0}\ge\frac{1}{4\alpha} \tag{7} t4v014α1(7) 其中第一个不等号由 (5) 和 (6) 可得,第二个不等号由(1)推得。
最后,对(1)做投射可得
v 0 + t   s ′ Σ s ≤ α v_0+t\,\mathbf{s}'\Sigma\mathbf{s}\leq\alpha v0+tsΣsα 利用 (5) 和 (7) 式即可推出 s ′ Σ s ≤ 4 α ( α − s 0 ) \mathbf{s}'\Sigma\mathbf{s}\leq 4\alpha(\alpha-s_0) sΣs4α(αs0)算毕。

Remark. 拉马努金不是帮助我们证明定理的,而是帮助我们发现定理的

参考文献
[1] Popescu, Ioana. 2007. Robust mean-covariance solutions for stochastic optimization. Operations Research 55(1) 98–112.
[2] Yu Zhang, Roberto Baldacci, Melvyn Sim, Jiafu Tang, Routing optimization with time windows under uncertainty, Math. Program

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zte10096334

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值