6.8 The Primary Decomposition Theorem

这个定理(Theorem 12)可能是非计算导向的线性代数课中比较重要的定理之一,也许比它重要的就是Spectral Theory了。这一定理从一个operator T T T的minimal polynomial出发,根据最小多项式的因式(primes)出发,得到一个对应的direct sum且invariant under T T T的对 V V V的分解,并且在每一个分解出的子空间中, T T T在其上的限制得到的operator的最小多项式恰是对应的prime。也就是说,根据 T T T最小多项式的因式情况,将 V V V分解为由每个因式独立支配(作为minimal polynomial)的subspace。这一定理比之前的讨论更进一步,是因为其并不再要求minimal polynomial的因式都是1阶的,可以更高阶,之前在最小多项式因式都是1阶且次幂为1时,我们可以将 T T T对角化,也就是将 V V V分解为由特征向量组成的子空间,如果1阶但次幂不为1,则可以将 T T T三角化,但无法得到direct sum的子空间。
在这一定理的证明过程中,可以得到与primary decomposition 对应的投影 E i E_i Ei T T T的一个多项式,因此如果 U U U T T T可交换,则primary decomposition出的每个子空间在 U U U下也是invariant的。
接下来讨论一个特殊情况,即 T T T的minimal polynomial的因式都是1阶(此时相当于可三角化但不一定对角化),通过Theorem 13可知, T T T可以分解为一个可对角化的operator和一个幂零的operator的和,且这两个operator是可交换的、唯一的,并且都可表示为 T T T的多项式。
实际上越读到后面越发现,多项式是一个神奇的东西。

Exercises

1.Let T T T be a linear operator on R 3 R^3 R3 which is represented in the standard ordered basis by the matrix
[ 6 − 3 − 2 4 − 1 − 2 10 − 5 − 3 ] . \begin{bmatrix}6&-3&-2\\4&-1&-2\\10&-5&-3\end{bmatrix}. 6410315223.
Express the minimal polynomial p p p for T T T in the form p = p 1 p 2 p=p_1p_2 p=p1p2, where p 1 p_1 p1 and p 2 p_2 p2 are monic and irreducible over the field of real numbers. Let W i W_i Wi be the null space of p i ( T ) p_i(T) pi(T). Find basis B i \mathfrak B_i Bi for the spaces W 1 W_1 W1 and W 2 W_2 W2. If T i T_i Ti is the operator induced on W i W_i Wi by T T T, find the matrix of T i T_i Ti in the basis B i \mathfrak B_i Bi.
Solution: We let A A A be the matrix above and then
det ⁡ ( x I − A ) = ∣ x − 6 3 2 − 4 x + 1 2 − 10 5 x + 3 ∣ = ∣ x − 2 2 − x 0 − 4 x + 1 2 − 10 5 x + 3 ∣ = ∣ x − 2 0 0 − 4 x − 3 2 − 10 − 5 x + 3 ∣ = ( x − 2 ) ( x 2 + 1 ) \begin{aligned}\det (xI-A)&=\begin{vmatrix}x-6&3&2\\-4&x+1&2\\-10&5&x+3\end{vmatrix}=\begin{vmatrix}x-2&2-x&0\\-4&x+1&2\\-10&5&x+3\end{vmatrix}\\&=\begin{vmatrix}x-2&0&0\\-4&x-3&2\\-10&-5&x+3\end{vmatrix}\\&=(x-2)(x^2+1)\end{aligned} det(xIA)=x64103x+1522x+3=x24102xx+1502x+3=x24100x3502x+3=(x2)(x2+1)
Since A − 2 I ≠ 0 A-2I\neq 0 A2I=0 and A 2 + I ≠ 0 A^2+I\neq 0 A2+I=0, the minimal polynomial of A A A is ( x − 2 ) ( x 2 + 1 ) (x-2)(x^2+1) (x2)(x2+1), thus p 1 = x − 2 p_1=x-2 p1=x2 and p 2 = x 2 + 1 p_2=x^2+1 p2=x2+1.
For W 1 W_1 W1 we have
2 I − A = [ − 4 3 2 − 4 3 2 − 10 5 5 ] → [ − 4 3 2 − 2 1 1 0 0 0 ] → [ − 2 1 1 0 1 0 0 0 0 ] 2I-A=\begin{bmatrix}-4&3&2\\-4&3&2\\-10&5&5\end{bmatrix}\rightarrow \begin{bmatrix}-4&3&2\\-2&1&1\\0&0&0\end{bmatrix}\rightarrow \begin{bmatrix}-2&1&1\\0&1&0\\0&0&0\end{bmatrix} 2IA=4410335225420310210200110100
Thus we can let B 1 = ( 1 , 0 , 2 ) \mathfrak B_1=(1,0,2) B1=(1,0,2).
For W 2 W_2 W2 we have
A 2 + I = [ 6 − 3 − 2 4 − 1 − 2 10 − 5 − 3 ] [ 6 − 3 − 2 4 − 1 − 2 10 − 5 − 3 ] + I = [ 5 − 5 0 0 0 0 10 − 10 0 ] A^2+I=\begin{bmatrix}6&-3&-2\\4&-1&-2\\10&-5&-3\end{bmatrix}\begin{bmatrix}6&-3&-2\\4&-1&-2\\10&-5&-3\end{bmatrix}+I=\begin{bmatrix}5&-5&0\\0&0&0\\10&-10&0\end{bmatrix} A2+I=64103152236410315223+I=50105010000
Thus we can let B 2 = { ( 1 , 1 , 0 ) , ( 1 , 1 , 1 ) } \mathfrak B_2=\{(1,1,0),(1,1,1)\} B2={ (1,1,0),(1,1,1)}.
The matrix T 1 T_1 T1 of B 1 \mathfrak B_1 B1 is 2 2 2, since it is the subspace of characteristic vectors associated with the characteristic value 2 2 2, or a direct computation shows that
A [ 1 0 2 ] = [ 6 − 3 − 2 4 − 1 − 2 10 − 5 − 3 ] [ 1 0 2 ] = [ 2 0 4 ] = 2 [ 1 0 2 ] A\begin{bmatrix}1\\0\\2\end{bmatrix}=\begin{bmatrix}6&-3&-2\\4&-1&-2\\10&-5&-3\end{bmatrix}\begin{bmatrix}1\\0\\2\end{bmatrix}=\begin{bmatrix}2\\0\\4\end{bmatrix}=2\begin{bmatrix}1\\0\\2\end{bmatrix} A102=6410315223102=204=2102
The matrix T 2 T_2 T2 of B 2 \mathfrak B_2 B2 can be computed with:
A [ 1 1 0 ] = [ 6 − 3 − 2 4 − 1 − 2 10 − 5 − 3 ] [ 1 1 0 ] = [ 3 3 5 ] = − 2 [ 1 1 0 ] + 5 [ 1 1 1 ] A [ 1 1 1 ] = [ 6 − 3 − 2 4 − 1 − 2 10 − 5 − 3 ] [ 1 1 1 ] = [ 1 1 2 ] = − [ 1 1 0 ] + 2 [ 1 1 1 ] A\begin{bmatrix}1\\1\\0\end{bmatrix}=\begin{bmatrix}6&-3&-2\\4&-1&-2\\10&-5&-3\end{bmatrix}\begin{bmatrix}1\\1\\0\end{bmatrix}=\begin{bmatrix}3\\3\\5\end{bmatrix}=-2\begin{bmatrix}1\\1\\0\end{bmatrix}+5\begin{bmatrix}1\\1\\1\end{bmatrix} \\ A\begin{bmatrix}1\\1\\1\end{bmatrix}=\begin{bmatrix}6&-3&-2\\4&-1&-2\\10&-5&-3\end{bmatrix}\begin{bmatrix}1\\1\\1\end{bmatrix}=\begin{bmatrix}1\\1\\2\end{bmatrix}=-\begin{bmatrix}1\\1\\0\end{bmatrix}+2\begin{bmatrix}1\\1\\1\end{bmatrix} A110=6410315223110=335=2110+5111A111=6410315223111=112=110+2111
Thus the matrix T 2 T_2 T2 in the basis B 2 \mathfrak B_2 B2 is [ − 2 − 1 5 2 ] \begin{bmatrix}-2&-1\\5&2\end{bmatrix} [2512].

2.Let T T T be the linear operator on R 3 R^3 R

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值