文章目录
作者: CHEN, Yue
单位: 浙江大学
时间限制: 200 ms
内存限制: 64 MB
代码长度限制: 16 KB
A1146 Topological Order (25 point(s))
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to “NOT a topological order”. The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
3 4
Code
#include <stdio.h>
#include <iostream>
#include <vector>
using namespace std;
vector<int> res,Adj[1010],temp(1010),indegree(1010);
int n,m,k,u,v;
int main(){
scanf("%d %d",&n,&m);
for(int i=0;i<m;i++){
scanf("%d %d",&u ,&v);
Adj[u].push_back(v);
indegree[v]++;
}
scanf("%d",&k);
for(int i=0;i<k;i++){
temp=indegree; // temp用于存每一个点的入度
int isOrder=1;
for(int j=0;j<n;j++){
scanf("%d",&u);
if(temp[u]!=0) isOrder=0; // 若某个点的入度非零就输出则不是拓扑排序序列
for(int l=0;l<Adj[u].size();l++) temp[Adj[u][l] ]--;
}
if(isOrder==0) res.push_back(i);
else continue;
}
for(int i=0;i<res.size();i++){
if(i==0) printf("%d",res[i]);
else printf(" %d",res[i]);
}
return 0;
}
Analysis
-给定一张有向图,并给出K个序列,输出不是拓扑排序序列的序列号。