基于小波分解与LSTM的城市轨道短时客流预测


1、文章信息

文章题为《A novel prediction model for the inbound passenger flow of urban rail transit》,是一篇发表在Information Science期刊上,关于城市轨道交通短时客流预测的文章。


2、摘要

城市轨道交通快捷方便,已成为许多城市实现交通现代化的首选。因此,高精度的短期入境客流预测对于城市轨道交通的日常管理至关重要,因为运营方可以根据预测的客流来控制客流或重新安排列车。随着自动收费器(AFC)的广泛应用,可以方便地获取和记录大量的历史行程数据。在已有的研究中,长短期记忆网络(LSTM)特别适合于学习具有长期相关性的时间序列数据,并被广泛应用于交通流预测中。由于LSTM总是将时间序列数据作为输入,因此它的输出将与之前的输入和输出相关。大多数车站入境客流呈周期性波动,是一个具有多时间尺度的非平稳序列。利用小波分析(wavelet)对时间序列进行处理,可以清晰地反映出不同时间尺度下的多重变化趋势。因此,小波分析可以有效地处理入境客流数据因时间/时段短而产生的波动性。

文章提出了一种结合小波分析和长短时记忆网络的深度学习模型(Wave-LSTM),通过对地铁站的历史时间序列分析,预测未来的进站客流。文章的重点分为如下三点:

  1. 该模型集成了小波分解小波重构LSTM。本文提出了一种新的一维时间序列预测模型。对时间序列分析,提取各车站的进站客流的临界特征,并估算出不同时间尺度下入境客流的未来趋势。综合小波分析和LSTM的优点,构建了Wave-LSTM模型。模型中,输入为该站历史入境客流,输出为该站预测的短期入境客流。

  2. 本文采用控制变量的方法来确定Wave-LSTM中的参数,包括合适的小波、分解深度、隐藏单元数和迭代次数等。值得注意的是,将Dmeyer小波应用于客流预测,显著提高了预测精度。

  3. 为了验证Wave-LSTM模型的有效性,文章对Wave-LSTM、ARIMA、非线性自回归预测模型(NAR)和标准LSTM模型进行了数值实验。本文提出的模型成功预测了北京地铁空港线东直门站的客流,并通过实际客流数据验证了该方法的有效性。


3、文章结构

  1. 首先提出了长短时记忆网络LSTM在时间序列分析中的优势,并提出了小波分析能够更好的反映时间序列的趋势。

  2. 描述了LSTM的原理,以及小波分析的原理,同时讲解了文章提出的Wave-LSTM的算法。

  3. 讲解了数据选取,以及模型调参(包括小波分解的分解深度以及小波函数的选择,LSTM参数的选择)

  4. 对比了Wave-LSTM、NAR、ARIMA、LSTM四个模型的预测效果,证明了模型的有效性。


4、模型结构

文章提出的模型大致可以分为三个部分:1、小波分解;2、训练LSTM模型;3、小波重构。

小波分解:

首先,模型的输入是待预测车站历史入境客流。在站位选择上,本文倾向于选择预测需求较大的站位。历史入境客流可以通过该站的每个入境AFC设备终端获得。之后,将数据分解,得到D1,D2,…,Dm,Am一系列数据。过程如下图所示:

721f9c75b60727ac59345a6f6a41d5b8.png

分解过程中要先确定适当的小波和分解深度。利用不同的小波对原始客流数据进行分解。通过观察多次分解得到的低频近似信号的平滑程度,重点关注平滑程度高的小波,为预测台站选择合适的小波和分解深度。文章选择分解深度为3,分别选取了haar、db5、sym3、coif、dmeyer作为小波函数,对15min、30min、60min三个时间粒度下的数据进行了实验。如下图所示。

15min:

4ad284e1316cf2f34222f4f34589c41b.png

30mins:

b412b20531762c170db3f6c390a73bc2.png

60mins:

85c055452adad6a1eae9982407e4b173.png

可以看到选取db5和dmeyer作为小波函数时都得到了时间序列的整体趋势且较为平滑。最终文章选取了dmeyer作为小波函数,分解深度为3,得到三组高频数据D1,D2,D3,以及低频数据A3。最终的分解框图以及分解结果如下图所示。

df37897133495a082fb45949036f6ebc.png

LSTM模型:

在得到了小波分解的结果后,将四组时间序列数据输入到LSTM模型中。LSTM模型结构如下图所示。

cafac3864b73ab694b95dd21a259ef21.png

输入t个历史时间步的数据,得到t+1时刻的结果,输入维度为4*t,输出维度为4*1。

小波重构:

利用Mallat算法对分解后的序列进行长度缩减。因此,我们应该采用重构算法对每一个被分解的序列进行重构,使每个重构序列都与原始序列长度相同。重建过程可以用下述式子表示:

9c6785ad70c49eb2c3c93896b4732b86.png

重构后就得到了下一个时刻的客流预测值。


5、实验结果及其分析

文章采用的指标为:MAE和RMSE。定义如下。

29ff376167c676eaaced27d829029263.png

Wave-LSTM模型调试过程如下所示。文章选取epoch=200,hidden units=100作为Wave-LSTM的参数。

1b03f735ab21a2ff4fea9527e527d44e.png

23bcfecc8fa39220b346422541342c9e.png

在15mins、30mins、60mins三种时间粒度下的预测结果如下。

c3a7abe746c245918b7f6f63935408e3.png

与ARIMA、NAR、LSTM模型MAE以及RMSE结果对比如下。

8a94be406265036f3a32f1a7972f49bc.png


6、总结

本文提出了一种城市轨道交通入境客流的混合预测模型。Wave-LSTM基于小波分析和LSTM,考虑了短期客流的波动性、非线性特征和时间相关性,解决了普通LSTM模型的不足和数据波动性的问题。然而,本文的一些局限性和不可逾越的研究空白还需要进一步探讨。首先,本文仅以东直门车站入境客流为研究对象,对整个铁路网车站进行调查,可以进一步提出一个最优模型。再有,由于机场线的特殊性,乘客受旅行时间的影响较小,但受航班安排的影响较大。在未来的研究中,航班时刻表也可以作为影响预测的输入变量。

ATTENTION

如果你和我一样是轨道交通、道路交通、城市规划相关领域的,可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

  • 3
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值