团队研究成果|基于时空网络的短时客流OD预测模型

导读

论文题目为《Short-Term Origin-Destination Demand Prediction Based on Spatiotemporal Encoder-Decoder Network with a Residual Feature Extractor》,文章来自Transportation Research Record 2024,是一篇短时客流OD预测领域论文,文中提出了一种新型深度学习框架——带有残差特征提取器的时空编码器-解码器网络,空间模块将OD对之间的关系转化为空间拓扑图,通过MGCN提取OD对之间的多重空间相关性,时间模块通过MConv-LSTM揭示不同OD数据模式中的时间相关性,同时考虑OD数据固有的空间特征,编码模块捕获时空依赖关系,并将其转换为一个密集的向量空间,解码模块将压缩向量解压,解码回OD图,并通过残差特征提取器预测未来的OD需求。本文通过在大量真实时间序列数据集上进行实验,实验结果表明,本文的OD预测模型取得了良好的效果,本文的RF-STED在各种情况下取得的卓越性能。

摘要

在线打车服务在日常交通中扮演着至关重要的角色。然而,某些地区由于访问受限,仍然面临着司机难以接单的问题。准确预测短期的起讫需求(OD需求)对于解决这些问题至关重要。本研究利用人工智能和大数据的最新进展,提出了一种带有残差特征提取器的时空编码-解码网络(RF-STED),用于在线打车服务中的短期OD需求预测。RF-STED模型基于深度学习模型,如图卷积网络和卷积长短时记忆网络(Conv-LSTM),包含时空网络、编码层和残差特征提取器。时空网络有两个分支:第一个分支通过多模式时间特征提取模块处理多模式的OD数据,利用多通道的Conv-LSTM捕捉时间相关性;第二个分支使用多空间特征提取模块将OD对的关联转换为空间拓扑,从而提取多空间相关性。编码层捕获时空依赖关系,而残差特征提取器将压缩向量解码回OD图,用于预测未来的需求。通过对美国曼哈顿出租车数据集的实验,RF-STED模型超越了10个基准模型和4个消融模型。结果强调了该模型在短期OD流量预测中的优势和鲁棒性。

贡献

(1)本文加入了OD对之间的趋势关系图用于描述OD对之间的空间关系,在此基础上基于K-means聚类对OD对进行了分类研究,结果表明:不同的OD对之间确实存在该空间关系,加入该空间关系的深度学习框架可以提高模型预测的准确度。

(2)本文提出了一种新的特征提取模块:残差特征提取器,该特征提取器采用不同大小的卷积核对编码向量进行特征提取,结果表明:残差特征提取器对于编码向量的特征提取效果较好。

(3)本文提出了一种新的深度学习模型,该模型可以挖掘OD对之间的多种空间相关性以及OD对本身的多种模式的时间相关性,并且具有良好的编码解码设计用于结合时间和空间相关性。该模型具有很强的优越性。

(4)本文基于曼哈顿地区网约车数据集,同时进行了基准模型实验以及消融实验,结果表明:本文提出的模型表现最优,具有很好的预测性以及适用性。

问题定义

为第i天第t个的OD数据。为了预测第i天第t个的OD数据,本文使用第i天的t个OD数据之前的OD数据挖掘时间特征和空间特征。但是,由于计算资源的限制,将其所有的历史OD数据都用上是不可能的,也是没有必要的,通常在短时OD预测中,未来OD数据主要存在两种主要的时间依赖性:趋势性(待预测OD受过去几个时间间隔内历史OD的影响)以及周期性(待预测OD在几天或者几周前同一时刻的OD数据的影响)。基于此,本文打算提取以下数据作为特征挖掘数据。

(1)基于趋势的特征:待预测OD数据前三个时刻的OD数据,即

(2)基于周期的特征:待预测OD数据日期的前三个日历日的同一时刻的OD数据,即

问题1:学习函数f (·):通过OD流的历史需求经过f (·)计算得到下一时刻OD需求。

方法

概况

下图描述了本文提出的RF-STED模型的概貌,该模型使用空间、时间特征提取-编码-解码框架。主要由时空网络、编码层、残差特征提取器组成。时空编码网络挖掘时间、空间依赖性,时间挖掘模块使用多个Conv-LSTM挖掘不同模式下OD数据的时间相关性,同时考虑了OD数据本身存在的空间特征。空间挖掘模块将OD对之间的关系抽象为空间拓扑图,提取了OD对之间多空间相关性。编码层感知时空依赖相关性并转换成密集的向量空间。残差特征提取器将压缩向量解码回 OD 图并预测未来 OD 需求。

多卷积长短时记忆(M-Conv-LSTM)网络

论文中提出的Conv-LSTM将一部分的连接替换为了卷积操作,其基本定义如下式,其中Xt是空间网络上的向量,Ht是第t时刻的输出在空间网络上的向量,‘*’代表卷积操作。

为了提取OD数据间的多种模式下的时间关系,本文设计了下图所示的训练架构。OD数据属于二维数据,当考虑时间因素时,便有了第三个维度(即时间维度),用于契合Conv-LSTM的输入向量维度,同时Conv-LSTM不仅能提取具有时间序列的OD数据的时间特征,同时也能提取OD数据中的空间特征。

假设我们有J种时间模式下的OD序列,J{1,  ,J}, 每种时间模式下OD数据对应的输入向量为ICLRn×n×F×T其中n代表划分区域数量、F代表OD量,T代表该OD数据的时间序列,将J种时间模式下的输入向量作为M-Conv-LSTM的输入,最后将各Conv-LSTM网络的输出展平,在相同位置进行堆叠得到输出向量OCLRn×n×O×J

多图卷积(M-GCN)网络

为了能够提取OD数据间的多种空间关系,本文设计了下图所示的训练架构,假设本文有K种空间关系对应K个邻接矩阵,K∊{1, ⋯ ,K}, OD数据对应的输入向量为ODI∈Rn×n×F,其中n代表划分区域数量、F代表OD数据的特征数量,将OD数据前几天、前几个时刻的数据作为其特征,首先合并ODI向量的前两个维度,得到一个新的向量ODIN∈RN×F,然后与K个邻接矩阵A∈RN×N同时作为M-GCN网络的输入,最后将各GCN网络的输出向量展平,在相同位置进行堆叠得到输出向量OGN∈RN×O×K

Encode层和残差特征提取器

现在,我们介绍残差特征提取器,这是本文所提出模型的一个核心组成部分。其主要作用是对编码层生成的输出向量进行解码,并预测所需的OD数据。残差特征提取器的关键组成部分是深度卷积(Deep-Conv)网络。每个Deep-Conv网络使用不同尺寸的卷积核,从编码数据中提取多样化的特征。其基本定义如下式。卷积操作是指通过滑动窗口将卷积核应用于输入特征图,将窗口中的各个元素与卷积核中的对应元素相乘后求和,从而获得输出特征图中位置为(i, j)的数值。这种卷积操作在捕捉输入数据中的局部特征方面具有良好的效果。

本研究继续采用一个 Deep-Conv 网络的输出作为下一个 Deep-Conv 网络的输入,如下图所示。每个 Deep-Conv 网络都使用不同的特征提取器,同时本文引入了残差网络,以解决深层网络结构中常见的梯度消失和梯度爆炸问题。

W,b 为整个编码-解码架构中的所有可训练权重和偏置,本文通过求解如下优化问题来训练这些权重和偏置:

该表达式中的第一项旨在最小化预测的OD需求模式与实际模式之间的平方损失,而后续项则引入了L2范数正则化项,以防止模型过于复杂,从而导致过拟合。模型的训练算法如下:

实验

定量结果

下表展示了RF-STED模型与所有基准模型的预测性能。表中的结果表明,结合空间和时间特征的模型,如Conv-LSTM模型和T-GCN,在预测性能上优于仅关注时间特征(如LSTMGRU)或空间特征(如2D CNNGCN)的深度学习模型。相比之下,传统的预测模型,如ARIMA,显示出有限的预测能力。它们在处理复杂的时空关系时遇到困难,需要为每个OD对单独建模,从而增加了预测过程的复杂性。本研究提出的RF-STED模型通过增强空间和时间特征的提取过程,显著提高了预测准确性。OD对之间的基本逻辑关系对于短期OD流量预测至关重要,不容忽视。该实验在一定程度上凸显了深度学习模型在短期OD流量预测中相较于传统方法的优势。此外,基础深度学习模型的协同组合优于单一模型。

定性结果

本研究随机选择了两个特定的时间点,并生成了三维可视化图,以展示实际和预测OD需求值的分布情况。下图中的ac显示了实际的OD需求值,而bd则展示了预测的OD需求值。通过对图像的观察可以看出,该区域的OD需求分布并不均匀。大多数区域的需求量较低,只有少数区域存在明显的出行需求。模型能够有效地捕捉到这一特征,准确识别出高需求区域,并对这些区域做出精确的预测。

为了提供更深入的预测性能分析,本文特意选择了两个OD对,分别具有最高的平均需求和最低的方差。它们的OD序列值预测结果以图形方式呈现,如下图所示。图中清晰地展示了模型能够紧密地逼近实际数据,充分捕捉了不同时间间隔内OD需求的独特模式。预测性能表现出显著的准确性和鲁棒性。

消融实验

为了进一步评估所提出的RF-STED模型中各个组成部分的逻辑基础和优势,进行了一系列消融实验,这些实验使用了RF-STED框架。实验通过调整模型结构、减少RF-STED模型中的模块数量、调整模型参数等策略,建立了比较消融模型。随后,利用这些消融模型对数据集进行预测,并计算了每个消融模型的各种评估指标。最终的预测结果总结如下表所示。

通过分析RF-STED-NoEDNoEncoder Decoder模块模型的预测结果,可以明显看出预测准确性略有下降。这表明编码层对主模型的预测具有积极影响。此外,编码层的存在使主模型能够有效地融合空间和时间特征,从而提高了预测准确性。

通过分析RF-STED-NoRFNoResidual Feature Extractor Module模型的预测结果,可以明显看到与主模型和RF-STED-NoED模型相比,预测准确性有显著下降。这突显了残差特征提取器在主模型中的积极作用。残差卷积网络通过对来自编码层的空间和时间特征向量进行多次卷积操作,帮助模型提取时间和空间特征之间的关系,从而提高了预测准确性。

通过分析RF-STED-NoSN空间特征提取模块模型的预测结果,可以看出模型的预测准确性显著下降,这表明空间特征提取模块是必要的。这也证明了本文所提出的四个OD对之间的空间关系是合理且正确的。同时,通过分析RF-STED-NoT No时间特征提取模块模型的预测结果,可以看到模型的预测准确性显著下降,表明时间特征提取模块的必要性和重要性。与RF-STED-NoS模型的比较表明,OD对之间的时间特征比空间关系更为重要,且它们是主模型的一个组成部分。

Attention

欢迎关注微信公众号《当交通遇上机器学习》!如果你和我一样是轨道交通、道路交通、城市规划相关领域的,也可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值