基于多任务学习的全市客流预测

1 文章信息

文章题为《Spatiotemporal multi-task learning for citywide passenger flow prediction》,是一篇在2017年的IEEE SmartWorld上的一篇文章,该文提出了基于多任务学习的模型,能够对城市范围内的客流进行预测。

2 摘要

由于客流的动态变化和时空相关性等多种因素的潜在影响,在全市范围内,对客流进行建模和预测具有很大的挑战性。为此,本文首先研究全市客流中多种类型的异构数据,并提取特征不同于每种类型的数据,包括流通性相关的功能、连通性和通行能力特征、区域特征、事件和天气特征以及时间视图特征。在此基础上,文章提出了一种基于时空多任务学习的回归预测方法。最后,文章利用来自多个来源的真实世界的数据集进行模型训练和验证。在真实数据上的实验结果证明了该方法在预测全市客流方面的有效性。

由于有多种潜在的影响因素,对全市客流的建模和预测具有很大的挑战性,文章列举了三个困难:

(1)如何描述一个地区客流的规律性变化;

(2)如何建立地方之间的关系;

(3)一些动态因素可能会对客流产生较大的影响,例如天气和特殊事件等。

为解决上述问题,文章提出了一种基于时空的多任务学习模型来共同预测每个区域的客流流入和流出。该方法的框架由三个主要部分组成:

(1)特征提取;

(2)时空多任务学习;

(3)流入和流出预测。

如下图所示。

a4b7555a15d3db537043e90a4d178d7b.png

文章的主要供贡献分为三个部分:

1、首先,利用不同类型的异质数据,以多角度呈现每个局部区域的轮廓来预测客流。

2、其次,提出了一种基于数据驱动的时空多任务学习模型,用于全市客流预测。

3、最后,文章对各种真实世界的数据集进行了广泛的评估。实验结果证明了该建模方法的有效性。

3 文章结构

1、首先对文章研究问题进行定义

2、给出了特征提取的具体内容和细节,共分为七个部分

3、给出了用于客流预测的多任务学习的定义和方法

4、以北京为目标城市,在真实数据集上对提出模型进行验证,并与基准模型比对

4 特征提取与多任务学习模型

4.1特征提取

包括七个部分:特征汇总、流动性特征、连通性和通行能力特征、区域特征、特殊事件与天气特征、时间视图特征。

特征汇总(Feature summary)

由于客流受到多种因素的影响,文章选取的特征包括5个部分:流动性特征,连接性和通行能力特征,区域特征,事件和天气相关特征,时间视图特征。文章提取了每天05:00到23:00的18个时间段的特征。如下表所示。

815a4df0eb8ff83bc52cf10f778b5c3a.png

流动性特征(mobility related features)

文章中所指的客流由公交、地铁和出租车组成,它们在公共交通系统中扮演着不同的角色。乘坐公共汽车的流入和流出定义如下:

14cd7650f425e98acc3688f62ca6b666.png

出租车和地铁的客流数据定义同上,符号表示如下所示。

eff5fb765c5d72ca6d516e9dcb80b3cd.png

接着文章对数据进行了分析。下图显示了中央商务区(CBD)不同交通方式所带来的客流比例。我们可以发现,在不同的时间段,乘坐公交车、地铁和出租车的人的比例是不一样的。主要的客流是由地铁和公共汽车带来的。此外,出租车在早上带来的客流量只有1%,而在晚上却上升到了10%。这可能是因为人们晚上更愿意打车回家。综上,文章认为考虑不同交通方式带来的客流是有意义的。

037197919b47a1a26e22a7821d10d1ab.png

连通性和通行能力特征(connectivity features and traffic capacity)

连通性特征表示一个局部区域与其他区域连接的能力。此外,它还反映了其连接区域的客流空间分布。文章选区的数据中总共有1911个交通区域。其中,一些区域吸引了大量的乘客,而一些区域吸引乘客数量较少。文章使用到达或离开该区域的客流统计数据来度量区域的连通性。若一个区域流量数目越大,则该区域的流动产生和吸引力的空间就分布越大。定义如下。

28e86e04e3979ecee60a1ac93c728d82.png

下图展示了,CBD区域连接的交通区域数量比北航大,故CBD连接区域的空间分布较北航宽。

15b1ece17b0756b762c064dff2f137d5.png

以上是针对连通性特征的定义,接着文章对通行能力进行了分析。由于每个区域的客流量与其相应的通行能力有关。一个区域的通行能力越强,其产生客流的可能性越大。因此文章通过计算经过每个区域的公交线路和地铁线路的数量。由于一条地铁线路的通行能力远远大于一条公交线路,当两条地铁线路经过时,就意味着有一个地铁换乘站。文章选取数据总共有268个地铁站,其中57个是中转站。至此,文章定义了一个特征,即附近是否有换乘地铁站

区域特征(regional characteristics)

由于文章考虑了全市范围内的客流,而全市又可以分为不同的区域,不同的区域有不同的特点、不同的功能。文章通过POI的分布进而代表区域的功能。文章将POI分为6类,如下图所示,展示了北京的POI分布图。

bd7f3955b0cc4d61d62b8d7beb160331.png

为了描述每个交通区域的不同特征,文章计算了交通区域附近的POI总数、POI类的熵以及每种类别所占的百分比。此外,文章还收集了各个区域平均房价数据进而表示区域的繁华程度,分别记为。附近POI总个数和POI类熵的定义如下:

aae53d12d116b36764c27b5c0db51d43.png

508dc8c6c2f07a77abdd70e19c39d4a6.png

特殊事件和天气特征(event and weather related features)

文章认为,特殊事件和天气会从两个方面影响客流。一方面影响交通状态,另一方面影响人们的出行目的。文章通过对数据分析,进一步证明了事件与天气对客流的影响。如下图所示,因举办音乐会而导致五棵松体育场周边客流变化,从2016年8月06日至2016年9月24日,连续8个周六,时间为05:00 - 23:00。

3c73a8358de1ff029eb6e43d688cc74e.png

如图所示,红色虚线框标记的四条曲线明显不正常,因为它们都受到了事件的影响。正常情况下,22:00以后客流会逐渐减少,而这四天完全不同。因为在这四天里,2016年8月20日,2016年8月27日,2016年9月17日,2016年9月24日,五棵松体育馆举办了一场大型音乐会。因此,22:00以后仍有大量旅客需要从这里出发。由此也证明了,事件对流入和流出有重要的影响。文章收集了2016年8月1日至2016年9月30日的事件和天气数据,并使用一个one-hot编码方法对每个交通区域的事件和天气特征进行编码。

时间视图特征(temporal view features)

结合交通区域的历史流入和流出的局部时间信息,文章构建交通区域的时间视图特征。具体而言,文章考虑前k个时间区间,并将其视为一个时间序列信号。为了更全面地捕捉时间序列信号的特征,我文章采用两种方法对该时间序列信号进行特征提取。首先,从时间序列中提取统计特征,包括均值、方差、中位数、上四分位数、下四分位数、最大值、最小值、偏度、峰度和自相关。其次,提取该时间序列的频域特征,包括快速傅里叶变换(FFT)和离散小波变换(DWT)。通过将上述所有时域特征合并(concatenate)成一个单一的特征向量从而构造时域视图特征。

4.2多任务学习模型

由于文章考虑整个北京的客流数据,并将北京市分为Z个区域,因此,文章的目标是建立Z(交通区域数量)模型来预测每个区域的流入和流出。对此,文章提出通过提取和利用这些交通区域之间适当的共享信息,同时建立所有Z交通区域的预测模型。

在介绍模型之前,先定义一些记号。Y表示总的客流量,其维度为Z*T,Z表示区域数目,T表示总天数。X表示特征,其维度为Z*T*M,其中M是Xz的维度。此外W是超参,维度为Z*M。

目标函数定义如下:

978ea5b307694aa5bcebf7256e433949.png

由于在实际的交通系统中,各交通区域的客流不仅受到本身的影响,还受到相邻交通区域和具有相似特征的交通区域的影响。为了在预测阶段获得良好的性能,文章在模型中加入了正则项, Lasso正则化和Ridge正则化。此外,客流具有空间依赖性。因此文章在模型中加入拉普拉斯矩阵惩罚,得到两个相似交通区域的参数W应该是相似的。最终的目标函数如下所示。

f43d334c2294954a902e9e6a09574644.png

进一步,为了优化目标函数,通过数学变化,将目标函数进一步优化。

216d81992c17aaf381a3c6c2a49eeb8b.png

通过变化,最小化目标函数就变成了一个凸优化问题,文章通过基于梯度下降搜索算法来搜索最佳参数W。伪代码如下图所示。

19f8c1dbf6c334a0108235bf5291b211.png

5 实验

按流入和流出分选区域后,流入和流出的累积分布如下图所示。

67ca8c4ec5b0a3de1c368f0a76cdf93a.png

该图反映出区域流量呈指数衰减。总共有1911个交通分区。排名前40位的区域占所有区域的2.1%,占总客流量的20%。排名前160位的区域占所有区域的8.4%,占总客流量的50%。前640个区域,占所有区域的33.5%,占总客流量的90%。针对这种现象,文章进行了三种模式的实验,分别预测排名前40、前160和前640的交通区域来提高效率。文章计算这三种模式的RMSE,分别表示为RMSE@40、RMSE@160和RMSE@640。

实验分为两个部分。

首先针对是否有正则项,文章进行了实验。结果如下图所示。

0d7df63bac7a99d9de66ec8536373c77.png

其中MTIOP指文章提出的多任务学习模型。MTIOP#LRS指结合了Lasso正则项,Ridge正则项,和拉普拉斯算子的正则项,MTIOP#LR指只考虑Lasso正则项,Ridge正则项,MTIOP#L指只结合Lasso正则项,,MTIOP#N指只结合拉普拉斯算子的正则项。下图展示了各个模型的参数。

f4b01e0a99a7b304ba5f37da66a5d413.png

通过结果可以发现,预测区域的数目越大,MTIOP#LRS的优势就越大,这证明了文章提出模型的有效性。

其次,文章将提出的模型与一些基准模型进行比对,结果如下图所示。

81117ff9a56754b2281760fd6ba2bbe7.png

6 结论

本文提出了一种基于时空的多任务学习模型MTIOP,该模型是一种基于数据驱动的同时预测全市客流的新方法。首先,构建特征表示来分析每个局部区域,包括与移动相关的特征、连接性和通行能力特征、区域特征、事件和天气以及时间视图特征。在此基础上,文章提出了一种基于时空的多任务学习模型,将Lasso正则化项、Ridge正则化项和Laplacian正则化项相结合,提高了预测模型的性能。最后,在真实数据集上的实验结果验证了该方法的有效性。

Attention

如果你和我一样是轨道交通、道路交通、城市规划相关领域的,可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

 

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值