“交通·未来”第32期:深度学习与交通模型相结合:一种基于计算图的学习框架

2020年6月份,公众号正式推出了“交通·未来”系列线上公益学术活动等你来~,上次的活动还是在2023年6月份,时隔近两年,2025年,新起航新征程,我们继续前行(希望这次启程能腾出更多的时间来做这件事情~)。4月29日上午09:00,我们将迎来活动的第32期。

1、讲座主题

深度学习与交通模型相结合:一种基于计算图的学习框架

2、内容简介

报告旨在构建一个系统且理论一致的机器学习模型,以量化和估计多层次铁路客运需求,并捕捉整体需求特征。模型可同时估计走廊沿线各车站的上下车人数、站际OD出行量,以及乘客在列车线路及其区段上的分布流量。

为实现这一目标,观察数据被转化为损失函数,并映射至一个层次化的流量网络中,以同步估计这些多层级需求变量。该学习模型通过引入巢式Logit(Nested Logit, NL)模型,进一步校准与铁路线路规划关键属性(如班次频率、票价水平、旅行时间)相关的可解释参数,从而实现对政策变化的敏感分析。

与传统离散选择模型不同,本文所提出的估计框架引入了基于线路的容量约束,以避免特定线路出现乘客过载问题,并协调不同观察变量之间的偏差。所构建的非线性估计模型被重构为一个可微的计算图,并利用现成的机器学习工具(如 TensorFlow)中的反向传播算法进行求解。

为验证方法的可行性,本文在京沪高铁走廊上进行了实证研究。多项损失函数在案例分析中的演化过程表明了该方法的准确性和收敛性。使用了14天的票务销售数据(其中10天用于训练,4天用于验证)以展示所提方法的实用性。

3、主讲人

武鑫博士毕业于北京交通大学,随后在美国亚利桑那州立大学与马里兰大学从事博士后研究工作。目前,他在美国宾夕法尼亚州的维拉诺瓦大学(Villanova University)担任研究助理(Research Assistant)。

他的研究方向涵盖交通建模、交通大数据分析、物流与供应链优化、铁路与航空运输系统的规划与评估,并拓展至公共卫生与气候变化等跨学科应用领域。已在《Transportation Research Board (TRB)》、《Transportation Research Part C (TRC)》、《Transportation Research Part E (TRE)》、《European Journal of Operational Research (EJOR)》等交通运输与运筹优化领域的国际权威期刊上发表数十篇学术论文。

4、时间地点

讲座时间:2025年4月29日(周二)上午09:00

讲座地点:#腾讯会议:886-920-3820

讲座线下地点:无

为减轻《交通·未来》系列讲座几位幕后小伙伴负担,B站同步直播通道已关闭,但B站官方主页会有不定时回放,请入腾讯会议收听讲座。

历史讲座B站回放地址:当交通遇上机器学习,https://space.bilibili.com/454645499

5、幕后团队

北京交通大学 张金雷博士

北京航空航天大学 张明华博士

西南交通大学 谭一帆博士

日本国立山梨大学 刘星委博士

陕西师范大学 安睿博士

一个人走得快,但一群人走得远!期待我们共同成长为交通领域未来之星!

交通大数据高阶交流群

目前群内三百余人,均为交通与计算机领域博士或高校教师。

补充进群条件(注:需同时满足以下三个条件):

1)麻烦发下个人简介和学术基本情况,可以是学术主页,有一篇一作sci或ccf b;

2)博士生或者高校教师;

3)在公众号做一次交通未来系列公开讲座(高效教师可免除讲座要求,可添加公众号官方微信,我来邀请大家进群)。

为方便交流,群内成员均为实名制,所以进群后一定修改备注为 “真实单位+真实姓名+真实研究方向”!扫描下方二维码验证进群:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值