【论文笔记】CBAM:Convolutional Block Attention Module(卷积块注意力模型)

本文是关于论文《CBAM: Convolutional Block Attention Module》的阅读笔记。

一、概述

深度学习中的注意力机制是模仿人类的注意力产生的,当我们在看一副图像时,图像中有些地方(比如人物照中的人的面部)会引起我们的注意力,而其他地方则可能会忽视。这相当于给整幅图像加了一个可视化的权重。注意力机制可以分为通道注意力和空间注意力等。简单来说,注意力机制就是给每个通道或整个空间特征图乘以一个权重,以表示它们的重要性。
在这里插入图片描述
CBAM包含两部分,一是通道的注意力,二是空间的注意力。CBAM可以用以下公式表示:
F ′ = M c ( F ) ⊗ F F ′ ′ = M s ( F ′ ) ⊗ F ′ \begin{aligned} \mathbf{F}^{\prime} &=\mathbf{M}_{\mathbf{c}}(\mathbf{F}) \otimes \mathbf{F} \\ \mathbf{F}^{\prime \prime} &=\mathbf{M}_{\mathbf{s}}\left(\mathbf{F}^{\prime}\right) \otimes \mathbf{F}^{\prime} \end{aligned} FF=Mc(F)F=Ms(F)F
其中, F F F是特征图, M c M_c Mc M s M_s Ms分别表示基于通道的和基于空间的注意力, ⊗ \otimes 表示逐元素相乘, F ′ F^\prime F F ′ ′ F^{\prime\prime} F分别表示进行了通道注意力和空间注意力后的输出特征图。由于CBAM模块的输入和输出大小相同,所以它可以插入到已有模型的任意位置。

二、通道注意力模块

在这里插入图片描述

通道注意力模块先对输入特征图在空间维度分别进行最大池化和平均池化,然后分别经过一个共享权重的MLP(多层感知机) ,然后将两者的输出做逐元素的相加,再经过sigmoid激活函数,得到通道注意力权重,将该权重和输入特征图做逐元素的乘法,就实现了通道上的注意力机制。

在空间维度分别进行最大池化和平均池化,其实就是只保留通道的维度,其他维度为1,得到一个一维的矢量,然后再经过共享权重的MLP,MLP由两层卷积操作组成,第一个卷积后使用ReLU激活函数,第二个卷积后使用sigmoid激活函数得到输出权重,然后将每个通道乘以其对应的权重。上述过程可以表示为:
M c ( F ) = σ ( MLP ⁡ ( A vg ⁡ Pool ⁡ ( F ) ) + M L P ( Max ⁡ Pool ⁡ ( F ) ) ) = σ ( W 1 ( W 0 ( F a v g c ) ) + W 1 ( W 0 ( F m a x c ) ) ) \begin{aligned} \mathbf{M}_{\mathbf{c}}(\mathbf{F}) &=\sigma(\operatorname{MLP}(A \operatorname{vg} \operatorname{Pool}(\mathbf{F}))+M L P(\operatorname{Max} \operatorname{Pool}(\mathbf{F}))) \\ &=\sigma\left(\mathbf{W}_{\mathbf{1}}\left(\mathbf{W}_{\mathbf{0}}\left(\mathbf{F}_{\mathbf{a v g}}^{\mathbf{c}}\right)\right)+\mathbf{W}_{\mathbf{1}}\left(\mathbf{W}_{\mathbf{0}}\left(\mathbf{F}_{\mathbf{m a x}}^{\mathbf{c}}\right)\right)\right) \end{aligned} Mc(F)=σ(MLP(AvgPool(F))+MLP(MaxPool(F)))=σ(W1(W0(Favgc))+W1(W0(Fmaxc)))
其中 σ \sigma σ表示sigmoid激活函数, W 0 W_0 W0 W 1 W_1 W1分别表示两个卷积操作, F a v g c F_{avg}^c Favgc F m a x c F_{max}^c Fmaxc分别表示平均池化和最大池化。

三、空间注意力模块

在这里插入图片描述

先对输入特征图做基于通道的最大池化和平均池化操作,将得到的两个特征图做基于通道的拼接,再对其进行卷积操作和sigmoid激活函数,得到通道数为1,特征图大小和输入相同的注意力权重,再与输入特征图做逐元素的乘法,就完成了空间注意力机制。该过程可以表示为:
M s ( F ) = σ ( f 7 × 7 ( [ AvgPool ( F ) ; Max ⁡ Pool ⁡ ( F ) ] ) ) = σ ( f 7 × 7 ( F a v g s ; F m a x s ] ) ) \begin{aligned} \mathbf{M}_{\mathbf{s}}(\mathbf{F}) &=\sigma\left(f^{7 \times 7}([\text {AvgPool}(\mathbf{F}) ; \operatorname{Max} \operatorname{Pool}(\mathbf{F})])\right) \\ &\left.=\sigma\left(f^{7 \times 7}\left(\mathbf{F}_{\mathbf{a v g}}^{\mathbf{s}} ; \mathbf{F}_{\mathbf{m a x}}^{\mathbf{s}}\right]\right)\right) \end{aligned} Ms(F)=σ(f7×7([AvgPool(F);MaxPool(F)]))=σ(f7×7(Favgs;Fmaxs]))
其中 f 7 × 7 f^{7\times7} f7×7表示卷积核大小为 7 × 7 7\times7 7×7的卷积操作。

四、代码

import torch
import torch.nn as nn
import torch.nn.functional as F


class CBAM_Module(nn.Module):
    def __init__(self, dim, in_channels, ratio, kernel_size):
        super(CBAM_Module, self).__init__()
        self.avg_pool = getattr(nn, "AdaptiveAvgPool{0}d".format(dim))(1)
        self.max_pool = getattr(nn, "AdaptiveMaxPool{0}d".format(dim))(1)
        conv_fn = getattr(nn, "Conv{0}d".format(dim))
        self.fc1 = conv_fn(in_channels, in_channels // ratio, kernel_size=1, padding=0)
        self.relu = nn.ReLU()
        self.fc2 = conv_fn(in_channels // ratio, in_channels, kernel_size=1, padding=0)
        self.sigmoid = nn.Sigmoid()
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
        self.conv = conv_fn(2, 1, kernel_size=kernel_size, stride=1, padding=padding)

    def forward(self, x):
        # Channel attention module:(Mc(f) = σ(MLP(AvgPool(f)) + MLP(MaxPool(f))))
        module_input = x
        avg = self.fc2(self.relu(self.fc1(self.avg_pool(x))))
        mx = self.fc2(self.relu(self.fc1(self.max_pool(x))))
        x = self.sigmoid(avg + mx)
        x = module_input * x
        # Spatial attention module:Ms (f) = σ( f7×7( AvgPool(f) ; MaxPool(F)] )))
        module_input = x
        avg = torch.mean(x, dim=1, keepdim=True)
        mx, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat((avg, mx), dim=1)
        x = self.sigmoid(self.conv(x))
        x = module_input * x
        return x
  • 6
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: CBAM卷积注意力的缩写,是一种用于交替堆叠到深度卷积神经网络(CNNs)中的模。它包含两个子模通道注意力空间注意力通道注意力用来对每个通道进行加权,确定哪些通道最重要。空间注意力在每个通道中对所有空间位置进行加权,可以捕捉不同位置的重要性,从而更好地定位物体。 CBAM的优点在于,它能够提高CNNs的性能,减少了过度拟合的情况。CBAM结构的输入任意大小、任意通道数、任意深度,因此可以适用于各种计算机视觉任务,包括图像分类,物体检测和语义分割等。 总之,CBAM是一种具有高灵活性和高性能的卷积注意力,能够极大地增强CNNs的表达能力,提高计算机视觉任务的准确性。 ### 回答2: CBAMConvolutional Block Attention Module),是一种用于图像分类的Attention,它主要是用于增强卷积神经网络(CNN)的特征表达能力,使得CNN能够更好地区分不同种类的图像。 CBAM结构由两部分组成,分别是CBAM-Channel和CBAM-Spatial。在CBAM-Channel中,它通过引入注意力机制,对每个通道的特征进行加权求和,并且使用全局平均池化操作,计算其重要性参数,进而对特征进行修正,从而提升模型的表达能力。CBAM-Spatial则通过空间注意力机制对图像中的区域进行注意力分配权重,进一步优化模型的性能。 CBAM在图像分类方面的性能表现非常卓越。实验证明,在对比原始ResNet和ResNeXt网络,以及加入CBAM的ResNet和ResNext网络进行图像分类时,加入CBAM的ResNet和ResNeXt网络具有更强的表达能力和更高的分类准确性,同时,它在训练过程中的收敛速度也有所提升。 总的来说,CBAM是一种非常有效的图像分类模,利用注意力机制对CNN的特征进行增强,为图像分类任务提供了更好的性能表现。随着人工智能的迅速发展,CBAM在图像识别、物体检测等领域将具有广阔的应用前景。 ### 回答3: CBAM卷积注意力的缩写,它是一种用于图像分类和目标检测的神经网络模型CBAM通过将通道空间注意力机制组合在一起,从而有效地提高了模型的性能。 CBAM分为两个部分:通道注意力机制空间注意力机制通道注意力机制是针对图像特征中的通道信息进行关注,它可以基于每个通道的特征图来计算权重,然后对于每个通道进行信息的调整和加权。这样,在网络中的每个层次上都能更好地利用有用的通道信息,减少无用信息对网络性能的影响。 空间注意力机制是针对图像特征中的空间信息进行关注。它能够自适应地计算每个像素点的权重,然后对于每个像素点进行信息的调整和加权。这样,网络中的每个空间位置都能更好地利用有用的空间信息,提高目标检测和分类的准确率。 通过组合这两种注意力机制CBAM能够区分有用和无用的特征,从而在图像分类和目标检测任务中取得更好的性能。CBAM通常被用在深度卷积神经网络中,例如ResNet以及MobileNet等,以提高整个网络中的特征提取能力和分类性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值