一文搞懂CBAM(通道+空间注意机制)

本文详细解析了CBAM(Convolutional Block Attention Module),包括通道注意力和空间注意力模块,通过实验展示了其在图像分类、目标检测任务上的优势,证明了CBAM的有效性。
摘要由CSDN通过智能技术生成

attention机制论文阅读《CBAM : Convolutional Block Attention Module》

网络图CBAM

先上网络图。简单说明一下,该结构由两个顺序子模块:通道模块和空间模块。特征图在每个深度网络的每个卷积块上自适应调整。
在这里插入图片描述
由上图所示,有输入、通道注意力模块、空间注意力模块和输出组成。输入特征 F ∈ R C ∗ H ∗ W F\in R^{C*H*W} FRCHW,然后是通道注意力模块一维卷积 M c ∈ R C ∗ 1 ∗ 1 {M_c}\in R^{C*1*1} McRC11 ,空间注意力模块的二维卷积 M s ∈ R 1 ∗ H ∗ W M_s\in R^{1*H*W} MsR1H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值