导读:自然语言处理(Natural Language Processing,NLP)技术是与自然语言的计算机处理有关的所有技术的统称,其目的是使计算机能够理解和接受人类用自然语言输入的指令,完成从一种语言到另一种语言的翻译功能。
自然语言处理技术的研究,可以丰富计算机知识处理的研究内容,推动人工智能技术的发展。
作者:达观数据
来源:大数据DT(ID:hzdashuju)
01 语义分析技术
自然语言处理技术的核心为语义分析。语义分析是一种基于自然语言进行语义信息分析的方法,不仅进行词法分析和句法分析这类语法水平上的分析,而且还涉及单词、词组、句子、段落所包含的意义,目的是用句子的语义结构来表示语言的结构。语义分析技术具体包括如下几点。
1. 词法分析
词法分析包括词形分析和词汇分析两个方面。一般来讲,词形分析主要表现在对单词的前缀、后缀等进行分析,而词汇分析则表现在对整个词汇系统的控制,从而能够较准确地分析用户输入信息的特征,最终准确地完成搜索过程。
2. 句法分析
句法分析是对用户输入的自然语言进行词汇短语的分析,目的是识别句子的句法结构,以实现自动句法分析的过程。
3. 语用分析
语用分析相对于语义分析又增加了对上下文、语言背景、语境等的分析,即从文章的结构中提取出意象、人际关系等附加信息,是一种更高级的语言学分析。它将语句中的内容与现实生活中的细节关联在一起,从而形成动态的表意结构。
4. 语境分析
语境分析主要是指对原查询语篇之外的大量“空隙”进行分析,以便更准确地解释所要查询语言的技术。这些“空隙”包括一般的知识、特定领域的知识以及查询用户的需求等。
5. 自然语言生成
AI驱动的引擎能够根据收集的数据生成描述,通过遵循将数据中的结果转换为散文的规则,在人与技术之间创建无缝交互的软件引擎。结构化性能数据可以通过管道传输到自然语言引擎中,以自动编写内部和外部的管理报告。
自然语言生成接收结构化表示的语义,以输出符合语法的、流畅的、与输入语义一致的自然语言文本。早期大多采用管道模型研究自然语言生成,管道模型根据不同的阶段将研究过程分解为如下三个子任务。
内容选择:决定要表达哪些内容。
句子规划:决定篇章及句子的结构,进行句子的融合、指代表述等。
表层实现:决定选择什么样的词汇来实现一个句子的表达。
早期基于规则的自然语言生成技术,在每个子任务上均采用了不同的语言学规则或领域知识,实现了从输入语义到输出文本的转换。
鉴于基于规则的自然语言生成系统存在的不足之处,近几年来,学者们开始了基于数据驱动的自然语言生成技术的研究,从浅层的统计机器学习模型,到深层的神经网络模型,对语言生成过程中每个子任务的建模,以及多个子任务的联合建模,开展了相关的研究,目前主流的自然语言生成技术主要有基于数据驱动的自然语言生成技术和基于深度神经