吐血整理!12种通用知识图谱项目简介

本文深入介绍了百科知识图谱如DBpedia、YAGO、Freebase、BabelNet、Wikidata,以及常识知识图谱如Cyc、ConceptNet、NELL和Microsoft ConceptGraph,探讨了中文类知识图谱项目,如Zhishi.me、XLore、CN-DBpedia,揭示了知识图谱在智能领域的应用与重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:王楠 赵宏宇 蔡月

来源:大数据DT(ID:hzdashuju)

f5a4bf9b6838c2508066c9371a015110.png

通用知识图谱大体可以分为百科知识图谱(Encyclopedia Knowledge Graph)和常识知识图谱(Common Sense Knowledge Graph)。

百科知识图谱是百科事实构成的,通常是“非黑即白”的确定性知识。早在2010年微软就开始构建商用知识图谱,应用于旗下的搜索、广告、Cortana等项目。2012年谷歌基于Freebase正式发布Google Knowledge Graph。

目前微软和谷歌拥有全世界最大的通用知识图谱,脸书拥有全世界最大的社交知识图谱。而阿里巴巴和亚马逊则分别构建了商品知识图谱。

相比之下,国内知识图谱创业公司则从智能客服、金融、法律、公安、航空、医疗等“知识密集型”领域作为图谱构建切入点。除了上述商业通用图谱以外,DBpedia、Yago、Wikidata、BabelNet等开放域百科知识图谱也蓬勃发展。

另一种常识知识图谱,则集成了语言知识和概念常识,通常关心的是带有一定的概率的不确定事实,因此需要挖掘常识图谱的语言关联或发生概率。下面,我们将对两类知识图谱做详细介绍。

730a387809df597de4db51d494d51507.png

01 百科知识图谱

百科知识图谱构建模式可以分为两类。一类是对单百科数据源进行深度抽取,典型代表有DBpedia。另一类是结合了语言知识库(如WordNet)后,出现了一大批兼具语言知识的百科知识库,如Google Knowledge Graph后端的Freebase、IBM Waston后端的YAGO,以及BabelNet。

此外,还有世界最大开放知识库WikiData等。下面我们分别进行介绍。

1. DBpedia

DBpedia是始于2007年的早期语义网项目,也就是数据库版本的多语言维基百科。DBpedia采用了严格的本体设计,包含人物、地点、音乐、组织机构等类型定义。从对维基百科条目和链接数据集中抽取包括abstract、infobox、category等信息。

DBpedia采用了RDF语义框架描述,DBpedia与Freebase、OpenCyc、BioRDF等其他数据集也建立了实体映射关系,目前拥有127种语言的超过2800万个实体与30亿个RDF三元组。根据抽样评测,RDF三元组的正确率达到88%[1]

2. YAGO

YAGO由德国马普研究所于2007年研制,集成了维基百科、wordNet和GeoNames三个来源的数据,是IBM沃森大脑的后端知识库之一。YAGO利用规则对维基百科实体的infobox进行抽取,通过实体类别推断构建“概念-实体”、“实体-属性”间的关系。

另外YAGO也融合了语言知识,比如将维基百科标签与WordNet中的概念(Synset)进行映射,以WordNet概念体系完成百科知识本体构建。很多知识条目也增加了时空属性维度描述。

目前,YA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值