电子电力技术的隔离型直流变换器—全桥变换器学习记录分享

🚀 【拓扑王者】全桥变换器(Full-Bridge Converter)深度揭秘:大功率电源设计的终极武器

当你需要处理上千瓦乃至数十千瓦的功率等级时,什么样的拓扑能同时满足高效、安全、可靠的严苛要求?

答案是:全桥变换器。

作为隔离型DC-DC拓扑家族中当之无愧的“功率王者”,全桥变换器凭借其独特的对称结构和卓越的功率处理能力,统治着通信电源、工业激光器、大功率充电桩等众多高端应用领域。与半桥和推挽拓扑相比,它为何能实现更高的功率密度?其四个开关管的复杂驱动背后,又隐藏着哪些性能上的巨大优势?

本文将带您深入全桥变换器的核心。我们将从拓扑的巧妙推演开始,揭示它如何由两个双管正激变换器“融合”而成;然后通过详尽的波形和模态分析,一步步拆解其工作过程;最后,我们将用一系列精准的设计公式,为您揭开从变压器设计到器件选型的全部奥秘。

5.5 全桥变换器

5.5.1 全桥变换器电路拓扑的推演

  • 全桥变换器由两个双管正激变换器在输入侧并联、副边整流后并联构成
  • 开关管 Q 1 Q_1 Q1( Q 4 Q_4 Q4) 和 Q 2 Q_2 Q2( Q 3 Q_3 Q3) 开关频率相同,驱动信号相差 T s / 2 T_s/2 Ts/2
  • 两个变压器共用一副磁芯,实现双向磁化
  • 通过桥臂合并,最终得到图5.18(e)所示的全桥变换器
特点:
  • 变压器原边绕组交流电压幅值为 U i n U_{in} Uin,与推挽变换器相同,是半桥变换器的2倍
  • 开关管电压应力为 U i n U_{in} Uin,与双管正激变换器相同
    在这里插入图片描述

5.5.2 全桥变换器的工作原理

假设条件:

  • 所有开关管、二极管为理想器件
  • 变压器、电感、电容为理想元件
  • 滤波电容足够大,输出电压纹波可忽略
    在这里插入图片描述
四种开关模态:

在这里插入图片描述

(1)开关模态1 [ 0 , T o n ] [0, T_{on}] [0,Ton](图5.20(a))
  • Q 1 Q_1 Q1 Q 4 Q_4 Q4 导通,输入电压 U i n U_{in} Uin 加在变压器原边
  • 励磁电流线性增加:
    i M = − I M m a x + U i n L M t (5.91) i_M = -I_{Mmax} + \frac{U_{in}}{L_M}t \tag{5.91} iM=IMmax+LMUint(5.91)
  • 副边电压:
    u s = U i n K (5.92) u_s = \frac{U_{in}}{K} \tag{5.92} us=KUin(5.92)
  • D R 1 D_{R1} DR1 导通, u r e c t = U i n / K u_{rect} = U_{in}/K urect=Uin/K,滤波电感电流线性上升
  • 原边电流:
    i p = i L f K + i M (5.93) i_p = \frac{i_{Lf}}{K} + i_M \tag{5.93} ip=KiLf+iM(5.93)
(2)开关模态2 [ T o n , T s / 2 ] [T_{on}, T_s/2] [Ton,Ts/2](图5.20(b))
  • Q 1 Q_1 Q1 Q 4 Q_4 Q4 关断, D R 2 D_{R2} DR2 导通, D R 1 D_{R1} DR1 截止
  • 滤波电感通过 D F W D_{FW} DFW 续流,电流线性下降
  • D R 2 D_{R2} DR2 电流: i D R 2 = K ⋅ I M m a x i_{DR2} = K \cdot I_{Mmax} iDR2=KIMmax
  • D F W D_{FW} DFW 电流: i D F W = i L f − K ⋅ I M m a x i_{DFW} = i_{Lf} - K \cdot I_{Mmax} iDFW=iLfKIMmax
(3)开关模态3(图5.20©)
  • Q 2 Q_2 Q2 Q 3 Q_3 Q3 导通,工作情况与模态1类似
(4)开关模态4(图5.20(d))
  • Q 2 Q_2 Q2 Q 3 Q_3 Q3 关断,工作情况与模态2类似
关于续流二极管的说明:
  • 去掉续流二极管 D F W D_{FW} DFW 后,在模态2和4中两只整流二极管同时导通
  • 忽略励磁电流时: i D R 1 = i D R 2 = i L f / 2 i_{DR1} = i_{DR2} = i_{Lf}/2 iDR1=iDR2=iLf/2
    在这里插入图片描述

5.5.3 全桥变换器的基本关系

1. 输出电压与输入电压的关系式

U o = D y U i n K (5.94) U_o = D_y \frac{U_{in}}{K} \tag{5.94} Uo=DyKUin(5.94)

  • D y D_y Dy:副边整流电压 u r e c t u_{rect} urect 的占空比
  • D y D_y Dy 是开关管占空比的2倍,最大可达1
2. 变压器原副边匝比

K = D y m a x U m i n U o (5.95) K = D_{y_{max}} \frac{U_{min}}{U_o} \tag{5.95} K=DymaxUoUmin(5.95)

  • U m i n U_{min} Umin:最低输入电压
  • D y m a x D_{y_{max}} Dymax:最大占空比,一般取0.9
3. 开关管承受的电压应力和流过的电流
  • 电压应力
    U Q j = U i n ( j = 1 , 2 , 3 , 4 ) (5.96) U_{Qj} = U_{in} \quad (j=1,2,3,4) \tag{5.96} UQj=Uin(j=1,2,3,4)(5.96)
  • 电流最大值(忽略励磁电流):
    I Q j m a x = I L m a x K ( j = 1 , 2 , 3 , 4 ) (5.97) I_{Qjmax} = \frac{I_{Lmax}}{K} \quad (j=1,2,3,4) \tag{5.97} IQjmax=KILmax(j=1,2,3,4)(5.97)
  • 电流平均值
    I Q j = I o K ⋅ D y 2 ( j = 1 , 2 , 3 , 4 ) (5.98) I_{Qj} = \frac{I_o}{K} \cdot \frac{D_y}{2} \quad (j=1,2,3,4) \tag{5.98} IQj=KIo2Dy(j=1,2,3,4)(5.98)
4. 整流二极管和续流二极管承受的电压应力和流过的电流
  • 整流二极管电压应力
    U D R 1 = U D R 2 = 2 U i n K (5.99) U_{DR1} = U_{DR2} = \frac{2U_{in}}{K} \tag{5.99} UDR1=UDR2=K2Uin(5.99)
  • 续流二极管电压应力
    U D F W = U i n K (5.100) U_{DFW} = \frac{U_{in}}{K} \tag{5.100} UDFW=KUin(5.100)
  • 电流波形与推挽变换器相同,参见式 ( 5.68 ) (5.68) (5.68) ( 5.72 ) (5.72) (5.72)
5. 滤波电感量和滤波电容量
  • 全桥变换器是隔离型 B u c k Buck Buck 结构,滤波参数计算同 B u c k Buck Buck 变换器
  • 整流电压 u r e c t u_{rect} urect 幅值为 U i n / K U_{in}/K Uin/K,脉动频率为开关频率的两倍

💎 总结与提升
通过以上对全桥变换器的全面解析,我们可以清晰地看到它为何能成为大功率应用的首选方案:

功率处理的极致平衡:全桥变换器在开关管电压应力( U i n U_{in} Uin) 和变压器原边电压幅值( U i n U_{in} Uin) 之间取得了完美平衡。它用四只开关管的复杂度,换来了与推挽相同的变压器电压利用率,同时将开关管应力稳定在 U i n U_{in} Uin,远低于推挽的 2 U i n 2U_{in} 2Uin,使其非常适合高输入电压、大功率的场景。

核心公式奠定设计基石:

输出公式 U o = D y U i n K U_o = D_y \frac{U_{in}}{K} Uo=DyKUin 是所有设计的起点,其副边占空比 D y D_y Dy 最大可达1,提供了宽广的电压调整范围。

匝比公式 K = D y m a x U m i n U o K = D_{y_{max}} \frac{U_{min}}{U_o} K=DymaxUoUmin 确保了系统在最低输入电压下的稳定运行。

应力公式清晰明确:开关管应力 U i n U_{in} Uin,整流管应力 2 U i n / K 2U_{in}/K 2Uin/K,为器件选型提供了直接依据。

固有的滤波优势:与推挽和半桥一样,其整流波形频率为开关频率的两倍,这极大地降低了对输出滤波电感电容的要求,是实现高功率密度和高动态响应的关键。

对称之美与成本之殇:全桥的对称结构带来了双向磁化、磁芯利用率高、不存在直流偏磁等天然优点。然而,四组独立的驱动电路和更高的控制复杂度也使其成为电路中成本和设计难度的制高点。

🌟 进阶思考与挑战
全桥变换器性能强大,但也对设计者提出了更高挑战。如何避免桥臂直通这一致命风险,对驱动死区设置提出了毫米级的精度要求。同时,在实际应用中,变压器的漏感会引发关断电压尖峰,如何通过缓冲电路或主动钳位来抑制,是工程实现中的一大考验。

💡 互动讨论
在您的设计经历中,是什么因素最终让您选择了全桥拓扑?在驱动设计、防止直通和抑制电压尖峰方面,您有哪些宝贵的实践经验?您认为在未来,它会被LLC等谐振拓扑所取代吗?欢迎在评论区分享您的见解,思想的碰撞能让我们共同进步!

如果这篇深度解析对您有所启发,请务必点击【点赞、收藏】支持一下!【关注】我,获取更多关于电源拓扑的硬核分析与设计指南。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值