Abstract: The main contents of this paper are: The quantitative proportions derived from (1) the widely recognized variability of the record, and (2) the inherent randomness of the system parameters, the total displacement ratio model of the elasticity that dominates the structure quite nominally determines the lateral strength. The random system parameters are treated as follows: the lateral yield strength and the viscous damping ratio of the system are considered independently. The Monte Carlo simulation technique is a set of data simulation systems that are widely used to replace the SDOF system and have been summarized from 20 scale seismic data. The main anisotropic tendency measure is that the dispersion coefficient of variation is considered to be the number rate of this displacement. It is generally believed that the system parameters that are considered random under the displacement ratio criterion are much smaller than the variability when the data is recorded artificially. It is estimated that this reported decomposition of complex surface gravity waves is likely to be implemented in the future in new probabilistic and evaluation methods for performance seismic design. It has also been shown that the variability in the resulting dispersion displacement ratio is lower than the intrinsic dispersion system parameter only in rare cases or for short periods of time.
1 Introduction
One of the most recently introduced methods for seismic design using standard performance is the displacement method, rather than the basic requirements of strength parameters for the design, evaluation and repair of structures. In addition, the current proposal to evaluate existing structures is based on the establishment of simplified analytical methods, where SDOF systems are structured by estimating global elastic displacement demand. Examples include ATC-40 guidelines [1], FEMA-273 [2], FEMA-356 [3]. In these resource documents, the structural calculation of global demand elastic displacement takes into account the relationship between the nonlinear SDOF system with maximum demand elastic displacement and the linear elastic SDOF system with maximum demand elastic displacement. Thus, recently a new attention has been paid to an approximate method to calculate reasonable estimates of the maximum displacement elasticity required for SDOF systems. In addition, probability-based seismic design/assessment methods are gaining increasing attention from researchers and designers in the earthquake engineering community. Therefore, according to comprehensive data estimates, the expected mean (i.e., the main propensity measure) of the maximum elastic displacement of the pattern is widely dominant in the structure and the associated variability (i.e., dispersion) in this parameter is very important for the effective implementation of this probability-based approach.
The first study investigated the relationship between maximum deformation of elasticity and elastic systems, mentioned in the sequel as the elastic displacement ratio DRin, directed by Veletsos et al. [4]. They note that the elasticity of the maximum deformation in the low frequency region is roughly the same as that of the elastic system. This view has given rise to the well-known "equal displacement rule". More recent studies have provided a wealth of valuable data on the central tendency of measures of elastic displacement ratio, DRin, elastoplastic and bilinear SDOF[5-10]. Recent studies of these have shown that drawing clear conclusions on the inelastic displacement ratio of different SDOF systems, Effective in various frequency domains is not a simple task. In addition, Gupta and Krawinkler [11], for example, are extending their ongoing research to include various types of DEGRADING systems. They thus demonstrate that the behavior of nonlinear SODF's vibration-rigid-contraction hysteretic causes greater inelastic displacement than that of abstract rigid-stress-strain systems. Furthermore, in one of the most complete studies of the effects of structural degradation on the elastic displacement requirements, Pekoz and Pincheira [12] report that The maximum elastic displacement of the degraded system is greater than the nondegrading system when the period of vibration is less than the primary period of ground motion (defined as the peak of the input energy spectrum of the elastic SDOF system). Although all of these studies provide important data on the centralization of trends in measures of elastic displacement relative to SDOF systems, mainly due to the relatively small sample size only very few provide reliable information on the dispersion of these ratios considering seismic waves. In past statistical studies to compensate for this deficiency, Ruiz-Garcia and Miranda [13] used a particularly large number of ground motions (240 records) in order to carefully assess the dispersion of so-called "transverse strength relatively constant" elastic displacement ratios DRin. However, this dispersion causes the assessment to consider the certainty of system parameters, and the only source of uncertainty in the recorded variability (RTR) is estimated in the dispersion Drin.
摘要:本文的主要内容是:(1)广泛认可的记录变异性和(2)系统参数的固有随机性推导出的定量比例,占主导地位的弹性总位移比模型在名义上决定了结构的侧向强度。随机系统参数处理如下:独立考虑系统的侧向屈服强度和粘滞阻尼比。蒙特卡罗模拟技术是一套广泛用于取代SDOF系统的数据模拟系统,是对20个比例尺地震数据的总结。主要的各向异性倾向度量方法是将色散变异系数视为该位移的数率。一般认为,在位移比准则下被认为是随机的系统参数远小于人工记录数据时的变异性。据估计,这种复杂表面重力波的分解在未来可能会应用于性能地震设计的新的概率和评价方法中。结果还表明,所得到的色散位移比的可变性仅在极少数情况下或在短时间内低于本征色散系统参数。
1介绍
最近引入的使用标准性能进行抗震设计的方法之一是位移法,而不是结构设计,评估和修复的强度参数的基本要求。此外,目前评估现有结构的建议是基于建立简化的分析方法,其中通过估计全局弹性位移需求来构建SDOF系统。例如ATC-40指南[1]、FEMA-273[2]、FEMA-356[3]。在这些资源文献中,全局需求弹性位移的结构计算考虑了具有最大需求弹性位移的非线性SDOF系统与具有最大需求弹性位移的线性弹性SDOF系统之间的关系。因此,最近人们开始关注一种近似方法来计算SDOF系统所需的最大位移弹性的合理估计。此外,基于概率的地震设计/评估方法越来越受到地震工程界研究人员和设计人员的关注。因此,根据综合数据估计,模式的最大弹性位移的期望平均值(即主要倾向测度)在结构中广泛占主导地位,并且该参数的相关变异性(即色散)对于有效实施这种基于概率的方法非常重要。
第一项研究研究了弹性系统的最大变形与弹性系统之间的关系,在后续研究中称为弹性位移比DRin,由Veletsos等人指导[4]。他们注意到,低频区最大变形的弹性与弹性系统的弹性大致相同。这种观点产生了著名的“等位移规则”。最近的研究为弹性位移比、DRin、弹塑性和双线性SDOF测度的集中趋势提供了大量有价值的数据[5-10]。近年来的研究表明,在不同频域有效地得出不同SDOF系统的非弹性位移比的明确结论并不是一项简单的任务。此外,例如Gupta和Krawinkler[11]正在将他们正在进行的研究扩展到包括各种类型的降解系统。因此,他们证明非线性SODF的振动-刚-收缩滞后特性比抽象的刚-应力-应变系统引起更大的非弹性位移。此外,Pekoz和Pincheira[12]在对结构退化对弹性位移需求影响的最完整研究之一中报道,当振动周期小于地震动主周期(定义为弹性SDOF系统输入能谱的峰值)时,退化系统的最大弹性位移大于未退化系统。虽然所有这些研究都提供了相对于SDOF系统的弹性位移测量趋势集中的重要数据,但主要是由于相对较小的样本量,只有很少的研究提供了考虑地震波的这些比率弥散的可靠信息。在过去的统计研究中,为了弥补这一缺陷,Ruiz-Garcia和Miranda[13]使用了特别大量的地面运动(240条记录),以仔细评估所谓的“横向强度相对恒定”弹性位移ra的离散性。