[LLM]大模型八股知识点(三)

大模型(LLMs)参数高效微调(PEFT) 面

1.微调方法是啥?如何微调?

微调(Fine-tuning)是一种迁移学习的技术,用于在一个已经预训练好的模型基础上,通过进一步训练来适应特定的任务或数据集。微调可以在具有相似特征的任务之间共享知识,从而加快训练速度并提高模型性能。

以下是一般的微调步骤:

微调的关键是在预训练模型的基础上进行训练,从而将模型的知识迁移到特定任务上。通过这种方式,可以在较少的数据和计算资源下,快速构建和训练高性能的模型。

  1. 选择预训练模型:选择一个在大规模数据集上预训练好的模型,如ImageNet上的预训练的卷积神经网络(如ResNet、VGG等)。这些模型通常具有良好的特征提取能力。

  2. 冻结底层权重:将预训练模型的底层权重(通常是卷积层)固定住,不进行训练。这是因为底层权重通常学习到了通用的特征,可以被用于许多不同的任务。

  3. 替换顶层分类器:将预训练模型的顶层分类器(通常是全连接层)替换为适合特定任务的新的分类器。新的分类器的输出节点数量应该与任务的类别数相匹配。

  4. 解冻部分权重(可选):根据任务的复杂性和可用的训练数据量,可以选择解冻一些底层权重,以便更好地适应新的任务。这样可以允许底层权重进行微小的调整,以更好地适应新任务的特征。

  5. 进行训练:使用特定任务的训练数据集对新的分类器进行训练。可以使用较小的学习率进行训练,以避免对预训练模型的权重进行过大的更新。

  6. 评估和调整:在训练完成后,使用验证集或测试集评估模型的性能。根据评估结果,可以进行调整,如调整学习率、调整模型结构等。

2. 为什么需要 PEFT?

PEFT(Performance Estimation and Modeling for Fine-Tuning)是一种用于微调任务的性能估计和建模方法。它的主要目的是帮助研究人员和从业者在微调过程中更好地理解和预测模型的性能,并进行更有效的模型选择和调优。

以下是一些需要使用PEFT的情况:

PEFT通过模型的性能估计和建模,可以提供更准确的预测和指导,帮助研究人员和从业者更好地进行微调任务的设计和优化。

  1. 模型选择:在微调之前,通常需要选择一个合适的预训练模型。PEFT可以帮助评估和比较不同预训练模型在特定任务上的性能,从而选择最适合的模型。

  2. 超参数调优:微调过程中可能涉及到一些超参数的选择,如学习率、批量大小等。PEFT可以帮助预估不同超参数设置下模型的性能,并指导超参数的调优。

  3. 计算资源规划:微调通常需要大量的计算资源,如显存、GPU时间等。PEFT可以帮助估计不同模型和数据集规模下的计算资源需求,以便更好地规划和分配资源。

  4. 模型压缩和加速:在一些场景下,需要将模型压缩或加速,以便在资源受限的设备上进行推理。PEFT可以帮助评估不同压缩和加速技术对模型性能的影响,并指导模型优化的方向。

3. 介绍一下 PEFT?

PEFT(Performance Estimation and Modeling for Fine-Tuning)是一种用于微调任务的性能估计和建模方法。它的目的是帮助研究人员和从业者在微调过程中更好地理解和预测模型的性能,并进行更有效的模型选择和调优。

PEFT的主要思想是通过预测模型在微调任务上的性能,提供对不同模型和参数设置的性能估计。这样可以避免在大规模数据集上进行昂贵的微调实验,从而节省时间和计算资源。

PEFT的关键步骤包括:

通过PEFT,研究人员和从业者可以在微调之前,通过预测模型的性能,选择最佳的预训练模型、超参数设置和资源规划策略。这样可以加速模型的开发和优化过程,提高微调任务的效率和性能。

  1. 数据采样:从原始数据集中采样一小部分数据用于性能估计。这样可以减少计算开销,同时保持采样数据与原始数据集的分布一致性。

  2. 特征提取:使用预训练模型提取采样数据的特征表示。这些特征通常具有很好的表达能力,可以用于性能估计。

  3. 性能估计模型:基于采样数据的特征表示,建立一个性能估计模型。这个模型可以是简单的线性回归模型,也可以是更复杂的神经网络模型。

  4. 性能预测:使用性能估计模型对未知数据的性能进行预测。通过输入微调任务的特征表示,模型可以输出预测的性能指标,如准确率、F1分数等。

4. PEFT 有什么优点?

PEFT具有以下几个优点:

综上所述,PEFT通过性能估计和建模,提供了一种高效、准确和可解释的方法,帮助研究人员和从业者进行微调任务的设计和优化。

  1. 节省时间和计算资源:传统的微调方法需要在大规模数据集上进行昂贵的实验,耗费大量时间和计算资源。而PEFT通过性能估计和建模,可以避免这些实验,节省时间和计算开销。

  2. 提供准确的性能预测:PEFT通过建立性能估计模型,可以对未知数据的性能进行预测。这样可以提供准确的性能指标,帮助研究人员和从业者更好地理解模型的性能。

  3. 辅助模型选择和调优:PEFT可以帮助选择最佳的预训练模型、超参数设置和资源规划策略。通过预测模型的性能,可以指导模型选择和调优的方向,提高微调任务的效率和性能。

  4. 可解释性和可扩展性:PEFT的性能估计模型可以是简单的线性回归模型,也可以是更复杂的神经网络模型。这使得PEFT具有很好的可解释性和可扩展性,可以适应不同的微调任务和数据集。

  5. 适用于资源受限的场景:在一些资源受限的场景下,如移动设备或边缘计算环境,无法进行大规模的微调实验。PEFT可以帮助估计模型在这些设备上的性能,并指导模型压缩和加速的方向。

5. 微调方法批处理大小模式GPU显存速度?

微调方法的批处理大小、模型大小和GPU显存之间存在一定的关系,可以影响微调的速度和性能。下面是一些常见的情况:

总之,微调方法的批处理大小、模型大小和GPU显存之间存在相互影响的关系。需要根据具体的情况来选择合适的参数设置,以在保证性能的同时,充分利用GPU资源并避免显存不足的问题。

  1. 批处理大小(Batch Size):批处理大小是指在每次迭代中同时处理的样本数量。较大的批处理大小可以提高GPU的利用率,加快训练速度,但可能会导致显存不足的问题。如果批处理大小过大,无法适应GPU显存的限制,可能需要减小批处理大小或使用分布式训练等方法来解决显存不足的问题。

  2. 模型大小(Model Size):模型大小指的是微调任务中使用的模型的参数量和内存占用。较大的模型通常需要更多的显存来存储参数和激活值,可能会导致显存不足的问题。在GPU显存有限的情况下,可以考虑使用轻量级模型或模型压缩等方法来减小模型大小,以适应显存限制。

  3. GPU显存:GPU显存是指GPU设备上可用的内存大小。如果微调任务所需的显存超过了GPU显存的限制,会导致显存不足的问题。在这种情况下,可以采取一些策略来解决显存不足,例如减小批处理大小、减小模型大小、使用分布式训练、使用混合精度训练等。

6. Peft 和 全量微调区别?

PEFT(Performance Estimation for Fine-Tuning)和全量微调(Full Fine-Tuning)是两种不同的微调方法,它们在性能估计和实际微调过程中的数据使用上存在一些区别。

而PEFT则通过性能估计和建模的方式,避免了在完整数据集上进行实验的过程。PEFT使用一部分样本数据来训练性能估计模型,然后利用该模型对未知数据的性能进行预测。

相比之下,PEFT通过性能估计和建模的方式,避免了在完整数据集上进行实验的过程,从而节省了时间和计算开销。

PEFT通过性能估计和建模的方式,可以预测模型在未知数据上的性能。虽然PEFT的性能预测准确性可能不如全量微调,但可以提供一个相对准确的性能指标,帮助研究人员和从业者更好地理解模型的性能。

综上所述,PEFT和全量微调在数据使用、时间和计算开销以及性能预测准确性等方面存在一些区别。选择使用哪种方法应根据具体情况和需求来决定。

  1. 性能预测准确性:全量微调通过在完整数据集上进行训练和调优,可以获得较为准确的性能指标。因为全量微调是在实际数据上进行的,所以能够更好地反映模型在真实场景中的性能。

  1. 时间和计算开销:全量微调需要在完整数据集上进行训练和调优,耗费大量时间和计算资源。尤其是在大规模数据集和复杂模型的情况下,全量微调的时间和计算开销会更大。

  1. 数据使用:全量微调使用完整的微调数据集进行模型的训练和调优。这意味着需要在大规模数据集上进行昂贵的实验,耗费大量时间和计算资源。

7. 多种不同的高效微调方法对比

在高效微调方法中,有几种常见的方法可以比较,包括迁移学习、知识蒸馏和网络剪枝。下面是对这些方法的简要比较:

这些高效微调方法都有各自的特点和适用场景。迁移学习适用于目标任务与预训练任务相似的情况,可以快速获得较好的性能。知识蒸馏适用于需要在小型模型上进行微调的情况,可以在保持高效性能的同时减少模型大小。网络剪枝适用于需要进一步减少微调所需资源的情况,可以在保持较好性能的同时减少模型大小和计算量。

综上所述,选择适合的高效微调方法应根据具体任务需求和资源限制来决定。不同方法之间也可以结合使用,以进一步提高微调的效率和性能。

  1. 迁移学习(Transfer Learning):迁移学习是一种通过利用预训练模型的知识来加速微调的方法。它可以使用在大规模数据集上预训练的模型作为初始模型,并在目标任务上进行微调。迁移学习可以大大减少微调所需的训练时间和计算资源,并且通常能够达到较好的性能。

  2. 知识蒸馏(Knowledge Distillation):知识蒸馏是一种将大型复杂模型的知识转移到小型模型中的方法。它通过在预训练模型上进行推理,并使用其输出作为目标标签,来训练一个较小的模型。知识蒸馏可以在保持较小模型的高效性能的同时,获得接近于大型模型的性能。

  3. 网络剪枝(Network Pruning):网络剪枝是一种通过减少模型的参数和计算量来提高微调效率的方法。它通过对预训练模型进行剪枝,去除冗余和不必要的连接和参数,从而减少模型的大小和计算量。网络剪枝可以显著减少微调所需的训练时间和计算资源,并且通常能够保持较好的性能。

8. 当前高效微调技术存在的一些问题

尽管高效微调技术在提高微调效率方面取得了一些进展,但仍然存在一些问题和挑战:

综上所述,当前高效微调技术在性能保持、通用性、数据依赖性和可解释性等方面仍然存在一些问题和挑战。随着研究的深入和技术的发展,相信这些问题将逐渐得到解决,并推动高效微调技术的进一步发展和应用。

  1. 性能保持:一些高效微调技术可能在提高效率的同时,对模型性能产生一定的影响。例如,网络剪枝可能会削减模型的容量,导致性能下降。因此,在使用高效微调技术时需要权衡效率和性能之间的关系,并进行适当的调整和优化。

  2. 通用性:目前的高效微调技术通常是针对特定的模型架构和任务设计的,可能不具备通用性。这意味着对于不同的模型和任务,可能需要重新设计和实现相应的高效微调技术。因此,需要进一步研究和开发通用的高效微调技术,以适应不同场景和需求。

  3. 数据依赖性:一些高效微调技术可能对数据的分布和规模具有一定的依赖性。例如,迁移学习通常需要目标任务和预训练任务具有相似的数据分布。这可能限制了高效微调技术在一些特殊或小规模数据集上的应用。因此,需要进一步研究和改进高效微调技术,使其对数据的依赖性更加灵活和适应性更强。

  4. 可解释性:一些高效微调技术可能会引入一些黑盒操作,使得模型的解释和理解变得困难。例如,知识蒸馏可能会导致模型的输出不再直接对应于原始数据标签。这可能会影响模型的可解释性和可信度。因此,需要进一步研究和改进高效微调技术,以提高模型的可解释性和可理解性。

9. 高效微调技术最佳实践

以下是一些高效微调技术的最佳实践:

综上所述,高效微调技术的最佳实践包括选择合适的预训练模型、冻结部分层、适当调整学习率、使用数据增强、使用早停策略以及结合其他高效微调技术。这些实践可以帮助提高微调的效率和性能,并在资源受限的情况下获得更好的结果。

  1. 选择合适的预训练模型:预训练模型的选择对于高效微调至关重要。选择在大规模数据集上训练过的模型,例如ImageNet上的模型,可以获得更好的初始参数和特征表示。

  2. 冻结部分层:在微调过程中,可以选择冻结预训练模型的一部分层,只微调模型的一部分层。通常,较低层的特征提取层可以被冻结,只微调较高层的分类层。这样可以减少微调所需的训练时间和计算资源。

  3. 适当调整学习率:微调过程中,学习率的调整非常重要。通常,可以使用较小的学习率来微调模型的较高层,以避免过大的参数更新。同时,可以使用较大的学习率来微调模型的较低层,以更快地调整特征表示。

  4. 数据增强:数据增强是一种有效的方法,可以增加训练数据的多样性,提高模型的泛化能力。在微调过程中,可以使用各种数据增强技术,例如随机裁剪、翻转和旋转等,以增加训练数据的数量和多样性。

  5. 早停策略:在微调过程中,使用早停策略可以避免过拟合。可以监测验证集上的性能,并在性能不再提升时停止微调,以避免过多训练导致模型在验证集上的性能下降。

  6. 结合其他高效微调技术:可以结合多种高效微调技术来进一步提高微调的效率和性能。例如,可以使用知识蒸馏来将大型模型的知识转移到小型模型中,以减少模型的大小和计算量。

10 PEFT 存在问题?

PEFT(Performance Estimation and Modeling for Fine-Tuning)是一种用于估计和建模微调过程中性能的方法。尽管PEFT在一些方面具有优势,但也存在一些问题和挑战:

综上所述,尽管PEFT在性能估计和建模方面具有一定的优势,但仍然存在精度限制、数据偏差、模型依赖性和计算复杂性等问题。在使用PEFT时,需要注意这些问题,并进行适当的验证和调整,以确保性能估计的准确性和可靠性。

  1. 精度限制:PEFT的性能估计是基于预训练模型和微调数据集的一些统计特征进行建模的。这种建模方法可能无法准确地捕捉到微调过程中的复杂性和不确定性。因此,PEFT的性能估计结果可能存在一定的误差和不确定性,无法完全准确地预测微调性能。

  2. 数据偏差:PEFT的性能估计和建模依赖于预训练模型和微调数据集的统计特征。如果这些特征与实际应用场景存在显著差异,PEFT的性能估计可能不准确。例如,如果微调数据集与目标任务的数据分布不一致,PEFT的性能估计可能会有较大的偏差。

  3. 模型依赖性:PEFT的性能估计和建模依赖于预训练模型的质量和性能。如果预训练模型本身存在一些问题,例如表示能力不足或训练偏差等,PEFT的性能估计可能会受到影响。因此,PEFT的性能估计结果可能在不同的预训练模型之间存在差异。

  4. 计算复杂性:PEFT的性能估计和建模可能需要大量的计算资源和时间。尤其是在大规模模型和数据集上,PEFT的计算复杂性可能会变得非常高。这可能限制了PEFT在实际应用中的可行性和可扩展性。

11  能不能总结一下各种参数高效微调方法?

当涉及到高效微调方法时,有几个关键的参数和技术可以考虑:

这些参数和技术可以根据具体的任务和数据集进行调整和应用。综合考虑这些方法,可以提高微调的效率和性能,并在资源受限的情况下获得更好的结果。

  1. 冻结层:在微调过程中,可以选择冻结预训练模型的一部分层,只微调模型的一部分层。通常,较低层的特征提取层可以被冻结,只微调较高层的分类层。这样可以减少微调所需的训练时间和计算资源。

  2. 学习率调整:微调过程中,学习率的调整非常重要。可以使用较小的学习率来微调模型的较高层,以避免过大的参数更新。同时,可以使用较大的学习率来微调模型的较低层,以更快地调整特征表示。

  3. 数据增强:数据增强是一种有效的方法,可以增加训练数据的多样性,提高模型的泛化能力。在微调过程中,可以使用各种数据增强技术,例如随机裁剪、翻转和旋转等,以增加训练数据的数量和多样性。

  4. 早停策略:在微调过程中,使用早停策略可以避免过拟合。可以监测验证集上的性能,并在性能不再提升时停止微调,以避免过多训练导致模型在验证集上的性能下降。

  5. 知识蒸馏:知识蒸馏是一种将大型模型的知识转移到小型模型中的方法,以减少模型的大小和计算量。通过将预训练模型的输出作为目标标签,可以在微调过程中使用知识蒸馏来提高小型模型的性能。

适配器微调(Adapter-tuning)篇

1.为什么 需要 适配器微调(Adapter-tuning)?

适配器微调(Adapter-tuning)是一种用于微调预训练模型的方法,它相比于传统的微调方法具有一些优势和应用场景。以下是一些需要适配器微调的情况:

总而言之,适配器微调是一种用于微调预训练模型的方法,它可以保留预训练模型的知识,减少计算量和时间,提高模型的可解释性和可复用性,并避免灾难性遗忘。这些优势使得适配器微调在某些任务和应用中成为一种有吸引力的选择。

  1. 保留预训练模型的知识:在传统的微调方法中,通常需要在微调过程中更新整个模型的参数。然而,对于某些任务和应用,我们可能希望保留预训练模型的知识,而只对特定任务进行微调。适配器微调可以实现这一目标,它只微调模型的适配器层,而不改变预训练模型的参数。

  2. 减少微调的计算量和时间:传统的微调方法需要更新整个模型的参数,这可能需要大量的计算资源和时间。适配器微调可以显著减少微调的计算量和时间,因为它只需要微调适配器层的参数,而不需要重新训练整个模型。

  3. 提高模型的可解释性和可复用性:适配器微调可以使模型更具可解释性和可复用性。通过在适配器层中添加任务特定的适配器,我们可以更好地理解模型在不同任务上的表现,并且可以将适配器用于其他类似的任务,从而提高模型的可复用性。

  4. 避免灾难性遗忘:在传统的微调方法中,微调过程可能会导致预训练模型在原任务上的性能下降,即灾难性遗忘。适配器微调通过只微调适配器层,可以避免对预训练模型的其他部分进行大幅度的更新,从而减少灾难性遗忘的风险。

2. 适配器微调(Adapter-tuning)思路?

适配器微调(Adapter-tuning)是一种用于微调预训练模型的方法,其思路可以概括如下:

适配器微调的思路是在预训练模型中添加适配器层,并只微调适配器层的参数,从而保留预训练模型的知识、减少计算量和时间,并提高模型的可解释性和可复用性。这种方法在许多自然语言处理和计算机视觉任务中都取得了良好的效果。

  1. 预训练模型选择:首先,选择一个适合任务的预训练模型,例如BERT、GPT等。这些预训练模型在大规模数据上进行了训练,具有较强的语义表示能力。

  2. 适配器层添加:在选择的预训练模型中,为目标任务添加适配器层。适配器层是一个小型的任务特定层,通常由一个或多个全连接层组成。适配器层的目的是将预训练模型的表示转换为适合目标任务的表示。

  3. 冻结其他层:在适配器微调中,通常会冻结预训练模型的其他层,只微调适配器层的参数。这是因为预训练模型已经在大规模数据上进行了训练,其低层特征提取层已经具有较好的特征表示能力,不需要进行大幅度的更新。

  4. 学习率调整:在微调过程中,可以使用较小的学习率来微调适配器层的参数,以避免过大的参数更新。同时,可以使用较大的学习率来微调预训练模型的其他层,以更快地调整特征表示。

  5. 数据增强和训练:为了增加训练数据的多样性,可以使用各种数据增强技术,例如随机裁剪、翻转和旋转等。然后,使用目标任务的标注数据对适配器层进行训练。

  6. 验证和调优:在微调过程中,可以使用验证集来监测模型的性能,并根据性能表现进行调优。可以根据验证集上的性能选择最佳的模型参数和超参数。

3.  适配器微调(Adapter-tuning)特点是什么?

适配器微调(Adapter-tuning)具有以下特点:

总而言之,适配器微调通过保留预训练模型的知识、减少计算量和时间、提高模型的可解释性和可复用性、避免灾难性遗忘以及具有灵活性和可扩展性等特点,成为一种有吸引力的微调方法。

  1. 保留预训练模型的知识:适配器微调只微调适配器层的参数,而不改变预训练模型的其他参数。这样可以保留预训练模型在大规模数据上学到的知识和特征表示能力。

  2. 减少微调的计算量和时间:相比于传统的微调方法,适配器微调只需要微调适配器层的参数,而不需要重新训练整个模型。这样可以大大减少微调的计算量和时间消耗。

  3. 提高模型的可解释性和可复用性:适配器微调在预训练模型中添加了适配器层,这些适配器层可以理解为任务特定的模块。通过适配器层,模型的性能在不同任务之间可以更好地解释和比较,并且适配器层可以用于其他类似的任务,提高模型的可复用性。

  4. 避免灾难性遗忘:传统的微调方法可能导致预训练模型在原任务上的性能下降,即灾难性遗忘。适配器微调只微调适配器层的参数,不对预训练模型的其他部分进行大幅度的更新,可以减少灾难性遗忘的风险。

  5. 灵活性和可扩展性:适配器微调可以在不同的预训练模型和任务中应用。适配器层的设计可以根据任务的特点进行调整,以适应不同的任务需求。这种灵活性和可扩展性使得适配器微调成为一种通用且高效的微调方法。

4. AdapterFusion 思路 是什么?

AdapterFusion是一种用于多任务学习的方法,其思路可以概括如下:

AdapterFusion的思路是在预训练模型中为每个任务添加适配器层,并通过适配器融合将不同任务的表示进行融合,从而提高多任务学习的性能。这种方法可以充分利用预训练模型的知识,并通过适配器融合实现任务之间的信息共享和互补,从而提高模型的泛化能力和效果。

  1. 预训练模型选择:首先,选择一个适合多任务学习的预训练模型,例如BERT、GPT等。这些预训练模型在大规模数据上进行了训练,具有较强的语义表示能力。

  2. 适配器层添加:在选择的预训练模型中,为每个任务添加适配器层。适配器层是一个小型的任务特定层,通常由一个或多个全连接层组成。适配器层的目的是将预训练模型的表示转换为适合每个任务的表示。

  3. 适配器融合:在AdapterFusion中,适配器融合是关键步骤。适配器融合通过将不同任务的适配器层的输出进行融合,得到一个综合的表示。常见的融合方法包括简单的加权平均、注意力机制等。

  4. 冻结其他层:在AdapterFusion中,通常会冻结预训练模型的其他层,只微调适配器层的参数。这是因为预训练模型已经在大规模数据上进行了训练,其低层特征提取层已经具有较好的特征表示能力,不需要进行大幅度的更新。

  5. 学习率调整:在微调过程中,可以使用较小的学习率来微调适配器层的参数,以避免过大的参数更新。同时,可以使用较大的学习率来微调预训练模型的其他层,以更快地调整特征表示。

  6. 数据增强和训练:为了增加训练数据的多样性,可以使用各种数据增强技术,例如随机裁剪、翻转和旋转等。然后,使用多个任务的标注数据对适配器层进行训练。

  7. 验证和调优:在微调过程中,可以使用验证集来监测模型的性能,并根据性能表现进行调优。可以根据验证集上的性能选择最佳的模型参数和超参数。

5 AdapterDrop 思路 是什么?

AdapterDrop是一种用于适配器微调的方法,其思路可以概括如下:

AdapterDrop的思路是通过适配器层的随机丢弃机制,实现动态的适配器选择和微调。这种方法可以增加模型的鲁棒性和泛化能力,使得模型能够适应不同任务的变化和不确定性。同时,通过随机丢弃适配器层,还可以减少模型的计算量和参数数量,提高模型的效率和可扩展性。

  1. 适配器层添加:首先,在预训练模型中为每个任务添加适配器层。适配器层是一个小型的任务特定层,通常由一个或多个全连接层组成。适配器层的目的是将预训练模型的表示转换为适合每个任务的表示。

  2. 适配器层的随机丢弃:在AdapterDrop中,引入了适配器层的随机丢弃机制。具体而言,对于每个任务,在训练过程中以一定的概率随机丢弃该任务的适配器层。这样,模型在训练过程中会随机选择使用哪些任务的适配器层进行微调。

  3. 动态适配器选择:在每个训练样本上,通过随机丢弃适配器层,模型会自动选择使用哪些任务的适配器层进行微调。这种动态的适配器选择机制可以增加模型的鲁棒性和泛化能力,使得模型能够适应不同任务的变化和不确定性。

  4. 训练和微调:在训练过程中,使用多个任务的标注数据对适配器层进行训练。对于每个训练样本,根据随机丢弃的适配器层进行微调,并计算损失函数以更新模型的参数。

  5. 推断和预测:在推断和预测阶段,可以选择使用所有任务的适配器层进行预测,或者根据某种策略选择部分任务的适配器层进行预测。这样可以根据具体应用场景的需求进行灵活的任务选择和预测。

6 AdapterDrop 特点 是什么?

AdapterDrop具有以下几个特点:

总之,AdapterDrop通过动态适配器选择、增加鲁棒性和泛化能力、减少计算量和参数数量以及灵活的任务选择和预测等特点,提供了一种有效的方法来进行适配器微调,进一步提高多任务学习的性能。

  1. 动态适配器选择:AdapterDrop引入了适配器层的随机丢弃机制,使得模型可以在训练过程中动态选择使用哪些任务的适配器层进行微调。这种动态适配器选择机制可以增加模型的鲁棒性和泛化能力,使得模型能够适应不同任务的变化和不确定性。

  2. 鲁棒性和泛化能力:通过随机丢弃适配器层,AdapterDrop可以让模型在训练过程中随机选择使用哪些任务的适配器层进行微调。这种随机性可以增加模型对于噪声和干扰的鲁棒性,并提高模型的泛化能力。

  3. 减少计算量和参数数量:通过随机丢弃适配器层,AdapterDrop可以减少模型的计算量和参数数量。在训练过程中,只有部分任务的适配器层被使用,其他任务的适配器层被丢弃,从而减少了模型的计算量和参数数量,提高了模型的效率和可扩展性。

  4. 灵活的任务选择和预测:在推断和预测阶段,可以根据具体的需求选择使用所有任务的适配器层进行预测,或者选择使用部分任务的适配器层进行预测。这种灵活的任务选择和预测机制可以根据具体应用场景的需求进行灵活调整,提高模型的适应性和可用性。

7. MAM Adapter 思路 是什么?

MAM Adapter(Masked and Masked Adapter for Multi-task Learning)是一种用于多任务学习的适配器微调方法,其思路可以概括如下:

MAM Adapter的思路是通过引入掩码机制和掩码预测任务,增强适配器层的表示能力,并通过联合训练优化任务预测和掩码预测的准确性。这种方法可以提高适配器微调的性能,进一步增强多任务学习的效果。

  1. 适配器层添加:首先,在预训练模型中为每个任务添加适配器层。适配器层是一个小型的任务特定层,通常由一个或多个全连接层组成。适配器层的目的是将预训练模型的表示转换为适合每个任务的表示。

  2. 掩码机制:在MAM Adapter中,引入了掩码机制来增强适配器层的表示能力。具体而言,对于每个任务,在训练过程中,随机选择一部分适配器层的神经元进行掩码操作,即将这些神经元的输出置为0。这样可以使得适配器层的表示更加丰富和多样化。

  3. 掩码预测:在训练过程中,除了对任务的预测进行优化外,还引入了掩码预测任务。具体而言,对于每个任务,在适配器层的输出上添加一个掩码预测层,用于预测哪些神经元应该被掩码。这样,模型在训练过程中不仅要优化任务的预测准确性,还要同时优化掩码预测任务的准确性。

  4. 联合训练:在训练过程中,使用多个任务的标注数据对适配器层和掩码预测层进行联合训练。通过最小化任务预测的损失和掩码预测的损失,来更新模型的参数。这样可以使得模型能够同时学习任务的表示和掩码的生成,进一步提高多任务学习的性能。

  5. 推断和预测:在推断和预测阶段,可以选择使用所有任务的适配器层进行预测,或者根据某种策略选择部分任务的适配器层进行预测。根据具体应用场景的需求,可以灵活选择适配器层进行预测,从而实现多任务学习的目标。

8 MAM Adapter 特点 是什么?

MAM Adapter具有以下几个特点:

总之,MAM Adapter通过掩码机制增强表示能力、联合训练优化任务和掩码预测、灵活的任务选择和预测等特点,提供了一种有效的方法来进行适配器微调,进一步提高多任务学习的性能。

  1. 掩码机制增强表示能力:MAM Adapter引入了掩码机制,通过随机掩码部分适配器层的神经元,从而增强适配器层的表示能力。这种掩码机制可以使得适配器层的表示更加丰富和多样化,有助于提高多任务学习的性能。

  2. 联合训练优化任务和掩码预测:MAM Adapter在训练过程中不仅优化任务的预测准确性,还同时优化掩码预测任务的准确性。通过最小化任务预测的损失和掩码预测的损失,来更新模型的参数。这样可以使得模型能够同时学习任务的表示和掩码的生成,进一步提高多任务学习的性能。

  3. 灵活的任务选择和预测:在推断和预测阶段,可以根据具体的需求选择使用所有任务的适配器层进行预测,或者选择使用部分任务的适配器层进行预测。这种灵活的任务选择和预测机制可以根据具体应用场景的需求进行灵活调整,提高模型的适应性和可用性。

  4. 提高多任务学习性能:MAM Adapter通过增强适配器层的表示能力和联合训练优化任务和掩码预测,可以提高多任务学习的性能。适配器层的表示能力增强了模型对任务的适应能力,而掩码预测任务的优化可以使得模型学习到更加鲁棒的表示。

LoRA 系列篇

  • 一、LoRA篇

    • 1.1 什么是 LoRA?

      💡 **什么是low-rank adaptation of large language models?**

      "low-rank adaptation of large language models" 是一种针对大型语言模型进行低秩适应的技术。大型语言模型通常具有数十亿个参数,这使得它们在计算和存储方面非常昂贵。低秩适应的目标是通过将语言模型的参数矩阵分解为低秩近似,来减少模型的复杂度和计算资源的需求。

      低秩适应的方法可以通过使用矩阵分解技术,如奇异值分解(Singular Value Decomposition,SVD)或特征值分解(Eigenvalue Decomposition),将语言模型的参数矩阵分解为较低秩的近似矩阵。通过这种方式,可以减少模型的参数量和计算复杂度,同时保留模型的关键特征和性能。

      低秩适应的技术可以用于加速大型语言模型的推理过程,减少模型的存储需求,并提高在资源受限环境下的模型效率。它是在大型语言模型优化和压缩领域的一个重要研究方向。

    • 1.2 LoRA 的思路是什么?

      💡

      LoRA(Low-Rank Adaptation)是一种用于大规模语言模型的低秩适应方法,旨在减少模型的计算和存储开销。它的核心思想是通过对模型参数矩阵进行低秩分解,以达到降低模型复杂度和提高效率的目的。

      具体而言,LoRA的思路可以分为以下几个步骤:

      通过LoRA的低秩适应方法,我们可以在不显著损失模型性能的情况下,降低大型语言模型的复杂度和资源需求。这对于在计算资源受限的环境下部署和使用语言模型非常有帮助。

    • 1.3 LoRA 的特点是什么?

      💡

      LoRA(Low-Rank Adaptation)具有以下几个特点:

      总之,LoRA通过低秩适应的方法,可以在减少存储需求和加速推理过程的同时,保持模型的关键特征和性能。这使得它成为在资源受限环境下使用大型语言模型的有效策略。

  1. 低秩适应:LoRA通过对大型语言模型的参数矩阵进行低秩分解,将其分解为较小的矩阵的乘积。这样可以减少模型的参数量和计算复杂度,提高模型的效率和速度。

  2. 保持关键特征:虽然低秩适应会舍弃一些对模型性能影响较小的细节,但它会尽量保留模型的关键特征。通过选择合适的低秩近似矩阵,可以最大限度地保持模型的性能。

  3. 减少存储需求:低秩适应可以显著减少大型语言模型的参数量,从而降低模型的存储需求。这对于在资源受限的设备上使用语言模型非常有益。

  4. 加速推理过程:由于低秩适应减少了模型的计算复杂度,因此可以加速模型的推理过程。这对于实时应用和大规模部署非常重要。

  5. 可扩展性:LoRA的低秩适应方法可以应用于各种大型语言模型,包括预训练的Transformer模型等。它是一种通用的技术,可以适应不同的模型架构和任务。

  1. 原始模型:首先,我们有一个大规模的语言模型,其参数矩阵往往非常庞大,包含数十亿个参数。

  2. 参数矩阵分解:LoRA通过对模型参数矩阵进行低秩分解,将其分解为两个或多个较小的矩阵的乘积。常用的矩阵分解方法包括奇异值分解(SVD)和特征值分解(Eigenvalue Decomposition)等。

  3. 低秩适应:在参数矩阵分解之后,我们可以选择保留较低秩的近似矩阵,而舍弃一些对模型性能影响较小的细微变化。这样可以减少模型的参数量和计算复杂度,同时保留模型的关键特征和性能。

  4. 重构模型:使用低秩适应后的近似矩阵重新构建语言模型,该模型具有较低的参数量和计算需求,但仍能保持相对较高的性能。

二、QLoRA篇

  • 2.1 QLoRA 的思路是怎么样的?💡

    QLoRA(Quantized Low-Rank Adaptation)是一种结合了量化和低秩适应的方法,用于进一步减少大规模语言模型的计算和存储开销。它的思路可以概括如下:

    通过结合量化和低秩适应的思路,QLoRA能够进一步减少大型语言模型的计算和存储开销。它在资源受限的环境下,尤其是移动设备等场景中,具有重要的应用价值。

  • 2.2 QLoRA 的特点是什么?

    💡

    QLoRA(Quantized Low-Rank Adaptation)具有以下几个特点:

    总之,QLoRA通过量化和低秩适应的方法,可以在减少存储需求和计算复杂度的同时,保持模型的关键特征和性能。它具有高效、通用和可扩展的特点,适用于各种大型语言模型的优化。

  1. 量化降低存储需求:通过将参数进行量化,将浮点数参数转换为固定位数的整数或更简单的表示,从而显著减少模型的存储需求。这对于在资源受限的设备上使用大型语言模型非常有益。

  2. 低秩适应减少计算复杂度:通过低秩适应的方法,将量化参数矩阵分解为较小的矩阵的乘积,进一步减少模型的参数量和计算复杂度。这可以加速模型的推理过程,提高模型的效率。

  3. 保持关键特征和性能:虽然量化和低秩适应会舍弃一些对模型性能影响较小的细节,但它们会尽量保留模型的关键特征和性能。通过选择合适的量化位数和低秩近似矩阵,可以最大限度地保持模型的性能。

  4. 可扩展性和通用性:QLoRA的量化和低秩适应方法可以应用于各种大型语言模型,包括预训练的Transformer模型等。它是一种通用的技术,可以适应不同的模型架构和任务。

  5. 综合优化:QLoRA综合考虑了量化和低秩适应的优势,通过量化降低存储需求,再通过低秩适应减少计算复杂度,从而实现了更高效的模型。这使得QLoRA成为在资源受限环境下使用大型语言模型的有效策略。

  1. 量化参数:首先,对大规模语言模型的参数进行量化。量化是一种将浮点数参数转换为固定位数的整数或更简单表示的方法。通过减少参数位数,可以显著减少模型的存储需求和计算复杂度。

  2. 参数矩阵分解:在量化参数之后,QLoRA使用低秩分解的方法对量化参数矩阵进行分解。低秩分解将参数矩阵分解为较小的矩阵的乘积,从而进一步减少模型的参数量和计算复杂度。

  3. 低秩适应:在参数矩阵分解之后,选择保留较低秩的近似矩阵,并舍弃一些对模型性能影响较小的细节。这样可以进一步减少模型的计算需求,同时保持模型的关键特征和性能。

  4. 重构模型:使用低秩适应后的近似矩阵和量化参数重新构建语言模型。这样得到的模型既具有较低的参数量和计算需求,又能保持相对较高的性能。

三、AdaLoRA篇

  • 3.1 AdaLoRA 的思路是怎么样的?

    💡

    AdaLoRA(Adaptive Low-Rank Adaptation)是一种自适应的低秩适应方法,用于进一步减少大规模语言模型的计算和存储开销。它的思路可以概括如下:

    通过自适应的低秩适应方法,AdaLoRA能够根据模型的性能和计算需求进行灵活调整,从而进一步减少大型语言模型的计算和存储开销。它可以根据具体任务和资源限制,自动找到一个平衡点,使模型在性能和效率之间达到最佳的平衡。

  1. 初始低秩适应:首先,对大规模语言模型的参数进行低秩适应。低秩适应是一种将参数矩阵分解为较小的矩阵的乘积的方法,从而减少模型的参数量和计算复杂度。初始低秩适应的目的是在不损失太多性能的情况下,尽可能地减少模型的计算需求。

  2. 评估性能和复杂度:在进行初始低秩适应之后,评估模型的性能和计算复杂度。性能可以通过模型在验证集上的准确率等指标来衡量,而计算复杂度可以通过模型的计算量来衡量。

  3. 自适应调整:根据评估的结果,如果模型的性能满足要求,那么适应低秩矩阵可以作为最终模型的参数。如果模型的性能不满足要求,那么可以考虑增加低秩适应的程度,即进一步减少参数量和计算复杂度。这个过程可以通过增加低秩适应的迭代次数或增加低秩矩阵的秩来实现。

  4. 重构模型:使用自适应调整后的低秩矩阵重新构建语言模型。这样得到的模型既具有较低的参数量和计算需求,又能保持相对较高的性能。

四、LoRA权重是否可以合入原模型?

💡

是的,LoRA权重可以合并到原模型中。在使用LoRA进行低秩适应时,原始模型的参数矩阵会被分解为较小的矩阵的乘积。这些较小的矩阵可以表示为低秩矩阵的形式,其中包含了原始模型的权重信息。

合并LoRA权重到原模型的过程通常涉及将低秩矩阵重新组合成原始模型的参数矩阵。这可以通过矩阵乘法等操作来实现。合并后的模型将包含原始模型的权重信息,同时也融入了低秩适应的优化,从而在减少计算和存储开销的同时保持模型性能。

需要注意的是,合并LoRA权重到原模型时,可能会有一些微小的性能损失。这是因为低秩适应过程中对参数进行了量化和近似处理,可能会损失一些细节信息。然而,通过合适的低秩适应方法和参数设置,可以最小化这种性能损失,同时获得较高的效率和较低的资源开销。

五、ChatGLM-6B LoRA后的权重多大?

六、LoRA 微调优点是什么?

LoRA微调具有以下几个优点:

综上所述,LoRA微调具有保留知识、减少资源开销、提高泛化能力和灵活性等优点,使得它成为大规模语言模型微调的一种有效方法。

  1. 保留原模型的知识:LoRA微调是在原模型的基础上进行的,因此可以保留原模型所学到的知识和表示能力。这意味着LoRA微调的模型可以继承原模型在大规模数据上训练得到的特征提取能力和语言模型知识,从而在微调任务上表现更好。

  2. 减少微调时间和资源开销:由于LoRA已经对原模型进行了低秩适应,减少了参数量和计算复杂度,因此LoRA微调所需的时间和资源开销相对较小。这对于大规模语言模型的微调任务来说是非常有益的,可以加快模型的训练和推理速度,降低资源消耗。

  3. 提高模型泛化能力:LoRA微调通过低秩适应,对原模型进行了一定程度的正则化。这种正则化可以帮助模型更好地泛化到新的任务和数据上,减少过拟合的风险。LoRA微调的模型通常具有更好的泛化能力,能够适应不同领域和任务的需求。

  4. 可扩展性和灵活性:LoRA微调方法的设计可以根据具体任务和资源限制进行调整和优化。可以通过调整低秩适应的程度、迭代次数和参数设置等来平衡性能和效率。这种灵活性使得LoRA微调适用于不同规模和需求的语言模型,具有较高的可扩展性。

七、LoRA微调方法为啥能加速训练?

💡

LoRA微调方法能够加速训练的原因主要有以下几点:

综上所述,LoRA微调方法通过减少参数量、降低计算复杂度、加速收敛速度和提高计算效率等方式,能够显著加速训练过程,特别适用于大规模语言模型的微调任务。

  1. 低秩适应减少了参数量:LoRA微调使用低秩适应方法对原模型的参数进行分解,将原始的参数矩阵分解为较小的矩阵的乘积形式。这样可以大幅度减少参数量,从而减少了模型的存储需求和计算复杂度。减少的参数量意味着更少的内存占用和更快的计算速度,从而加速了训练过程。

  2. 降低了计算复杂度:由于LoRA微调减少了参数量,每个参数的计算量也相应减少。在训练过程中,计算参数更新和梯度传播的时间会显著减少,从而加速了训练过程。特别是在大规模语言模型中,参数量巨大,计算复杂度很高,LoRA微调可以显著减少计算开销,提高训练效率。

  3. 加速收敛速度:LoRA微调通过低秩适应对原模型进行了正则化,使得模型更容易收敛到较好的解。低秩适应过程中的正则化可以帮助模型更好地利用数据进行训练,减少过拟合的风险。这样可以加快模型的收敛速度,从而加速训练过程。

  4. 提高了计算效率:LoRA微调方法通过低秩适应减少了模型的参数量和计算复杂度,从而提高了计算效率。这意味着在相同的计算资源下,LoRA微调可以处理更大规模的数据和更复杂的任务。同时,也可以利用较少的计算资源来训练模型,从而减少了时间和成本。

八、如何在已有LoRA模型上继续训练?

💡

在已有LoRA模型上继续训练可以按照以下步骤进行:

需要注意的是,在进行微调训练时,需要根据具体任务和数据集的特点进行调整和优化。可能需要尝试不同的超参数设置、微调数据集的选择等,以获得更好的微调效果。

  1. 加载已有的LoRA模型:首先,需要加载已经训练好的LoRA模型,包括原始模型的参数和低秩适应所得到的参数。可以使用相应的深度学习框架提供的函数或方法来加载模型。

  2. 准备微调数据集:根据需要进行微调的任务,准备相应的微调数据集。这些数据集可以是新的标注数据,也可以是从原始训练数据中选择的子集。确保微调数据集与原始训练数据集具有一定的相似性,以便模型能够更好地泛化到新的任务上。

  3. 设置微调参数:根据任务需求,设置微调的超参数,包括学习率、批大小、训练轮数等。这些参数可以根据经验或者通过实验进行调整。注意,由于LoRA已经对原模型进行了低秩适应,可能需要调整学习率等参数来适应新的微调任务。

  4. 定义微调目标函数:根据任务类型,定义微调的目标函数。这可以是分类任务的交叉熵损失函数,回归任务的均方误差损失函数等。根据具体任务需求,可以选择合适的损失函数。

  5. 进行微调训练:使用微调数据集和定义的目标函数,对已有的LoRA模型进行微调训练。根据设定的超参数进行迭代训练,通过反向传播和优化算法更新模型参数。可以使用批量梯度下降、随机梯度下降等优化算法来进行模型参数的更新。

  6. 评估和调整:在微调训练过程中,定期评估模型在验证集上的性能。根据评估结果,可以调整超参数、微调数据集等,以进一步优化模型的性能。

  7. 保存微调模型:在微调训练完成后,保存微调得到的模型参数。这样就可以在后续的推理任务中使用微调后的模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值