DPO作者新作|From r to Q*

DPO作者新作|From r to Q*

包包算法笔记 2024-05-26 10:06 北京

今天推荐一篇DPO作者的新作:

本文几乎是DPO的原班人马搞的,新来的Joey Hejna是X-QL(本文部分核心理论)一作。这篇文章并没有提出一个新的算法,或者是在一个新的任务上刷了SOTA,主要是对DPO算法给出了一个理论解释,统一了处理LLM强化学习任务的两个视角,即序列决策还是单步决策。用强化学习的语言就是说dense or sparse reward,r or Q*。而后者这个Q*有不禁让人联想到OPENAI“泄露的Q*计划”。应该说还是有其理论价值的。

### PPO 和 DPO 算法对比 #### 近端策略优化(Proximal Policy Optimization, PPO) 近端策略优化(PPO)是一种基于策略梯度的强化学习方法,旨在通过减少更新过程中策略的变化幅度来提升训练稳定性。该算法可以使用 Python3 和 TensorFlow 实现,并支持并行化处理以加速数据传输[^1]。具体来说,PPO 使用一种称为信任区域的方法,在每次迭代中仅允许策略发生有限范围内的变化。这种方法不仅提高了收敛速度,还减少了计算资源的需求。 此外,OpenAI 提供了一种名为 PPO2 的 GPU 加速版本,其性能相较于传统 PPO 基准提升了约三倍,特别是在 Atari 游戏环境中表现尤为显著。因此,PPO 是当前强化学习领域中最常用的基础算法之一。 #### 直接偏好优化(Direct Preference Optimization, DPO) 直接偏好优化(DPO)则属于另一种类型的强化学习算法,主要针对离线设置下的偏好优化问题。相比于传统的奖励函数定义方式,DPO 将奖励重新参数化为人类反馈的形式,从而简化了训练流程并增强了模型的稳定性[^2]。这种新方法能够更好地适应复杂的现实世界场景,尤其是在难以明确指定目标的情况下特别有用。 值得注意的是,DPO 并不依赖于显式的奖励信号,而是直接利用成对比较的结果来进行决策调整。这意味着它可以有效地规避因错误设定而导致的行为偏差问题。另外,还有研究者提出了 SimPO——一种更为简洁高效的新方案作为替代选项。 #### 主要区别总结 | 特性 | PPO | DPO | |---------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------| | **应用场景** | 在线/在线混合环境 | 离线环境 | | **核心机制** | 利用代理估计优势值并通过截断概率比率控制步长 | 依据配对偏好的软最大似然估计 | | **硬件需求** | 支持MPI并行运算 | 更加轻量级 | | **理论基础** | 需要精确建模状态转移动态 | 不需详细了解底层动力学 | 尽管两者都致力于解决不同形式的价值最大化难题,但它们各自侧重的方向存在明显差异:一方面,PPO 注重实时交互过程中的探索与开发平衡;另一方面,DPO 则强调如何充分利用已有历史记录完成高质量预测任务。 ```python import tensorflow as tf from stable_baselines import PPO2 # Example of initializing a PPO model with Tensorflow backend. model = PPO2('MlpPolicy', env, verbose=1) def direct_preference_optimization(preference_matrix): """ A simplified function to demonstrate how preferences might be optimized directly. Args: preference_matrix (numpy.ndarray): Matrix representing pairwise comparisons between items. Returns: numpy.ndarray: Optimized policy based on given preferences. """ pass # Placeholder for actual implementation logic according to specific requirements. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值