LLM分布式训练---流水线并行

文本讲述并行技术是模型并行,即模型被分割并分布在一个设备阵列上,每一个设备只保存模型的一部分参数。

模型并行分为张量并行和流水线并行,张量并行为层内并行,对模型 Transformer 层内进行分割、流水线为层间并行,对模型不同的 Transformer 层间进行分割。

简介

所谓流水线并行,就是由于模型太大,无法将整个模型放置到单张GPU卡中;因此,将模型的不同层放置到不同的计算设备,降低单个计算设备的显存消耗,从而实现超大规模模型训练。

流水线并行PP(Pipeline Parallelism),是一种最常用的并行方式,也是最初Deepspeed和Megatron等大模型训练框架都支持的一种并行方式。

如下图所示,模型共包含四个模型层(如:Transformer层),被切分为三个部分,分别放置到三个不同的计算设备。

即第 1 层放置到设备 0,第 2 层和第三 3 层放置到设备 1,第 4 层放置到设备 2。

相邻设备间通过通信链路传输数据。

前向计算过程中,输入数据首先在设备 0 上通过第 1 层的计算得到中间结果,并将中间结果传输到设备 1,然后在设备 1 上计算得到第 2 层和第 3 层的输出,并将模型第 3 层的输出结果传输到设备 2,在设备 2 上经由最后一层的计算得到前向计算结果。反向传播过程类似。最后,各个设备上的网络层会使用反向传播过程计算得到的梯度更新参数。由于各个设备间传输的仅是相邻设备间的输出张量,而不是梯度信息,因此通信量较小。

通过这种方式,可以让原先无法装载大模型的单一GPU训练模式通过类似流水线扩展的方式,让更多的GPU显存来承载训练中的模型的各种参数,梯度,优化器,Activation等数据。

朴素流水线并行

朴素流水线并行是实现流水线并行训练的最直接的方法。我们将模型按照层间切分成多个部分(Stage),并将每个部分(Stage)分配给一个 GPU。然后,我们对小批量数据进行常规的训练,在模型切分成多个部分的边界处进行通信。

下面以 4 层顺序模型为例:

output=L4(L3(L2(L1(input))))

我们将计算分配给两个 GPU,如下所示:

  • GPU1 computes: intermediate=L2(L1(input))
  • GPU2 computes: output=L4(L3(intermediate))

为了完成前向传播,我们在 GPU1 上计算中间值并将结果张量传输到 GPU2。 然后, GPU2 计算模型的输出并开始进行反向传播。 对于反向传播,我们从 GPU2 到 GPU1 的中间发送梯度。 然后, GPU1 根据发送的梯度完成反向传播。 这样,流水线并行训练会产生与单节点训练相同的输出和梯度。 朴素流水线并行训练相当于顺序训练,这使得调试变得更加容易。

朴素流水线并行存在的问题

那么该方法为什么被称为朴素流水线并行呢,它又有什么缺陷呢?

  • 低GPU利用率。 在任意时刻,有且仅有一个GPU在工作,其他GPU都是空闲的。
  • 计算和通信没有重叠。在发送前向传播的中间结果(FWD)或者反向传播的中间结果(BWD)时,GPU也是空闲的。
  • 高显存占用。GPU1需要保存整个minibatch的所有激活,直至最后完成参数更新。如果batch size很大,这将对显存带来巨大的挑战。

主要是因为该方案在任意给定时刻,除了一个 GPU 之外的其他所有 GPU 都是空闲的。因此,如果使用 4 个 GPU,则几乎等同于将单个 GPU 的内存量增加四倍,而其他资源 (如计算) 相当于没用上。所以,朴素流水线存在很多的Bubble。朴素流水线的 Bubble 的时间为 𝑂(𝐾−1/𝐾),当K越大,即GPU的数量越多时,空置的比例接近1,即GPU的资源都被浪费掉了,因此,朴素的流水线并行将会导致GPU使用率过低

另外,还需要加上在设备之间复制数据的通信开销;所以 4 张使用朴素流水线并行的 6GB 卡将能够容纳 1 张 24GB 卡相同大小的模型,而后者训练得更快;因为,它没有数据传输开销。

还有通信和计算没有交错的问题:当我们通过网络发送中间输出 (FWD) 和梯度 (BWD) 时,没有 GPU 执行任何操作。

除此之外,还存在高内存需求的问题:先执行前向传播的GPU(如:GPU1)将保留整个小批量缓存的所有激活,直到最后。如果批量大小很大,可能会产生内存问题。

MicroBatch流水线并行

微批次(MicroBatch)流水线并行与朴素流水线几乎相同,但它通过将传入的小批次(minibatch)分块为微批次(microbatch),并人为创建流水线来解决 GPU 空闲问题,从而允许不同的 GPU 同时参与计算过程,可以显著提升流水线并行设备利用率,减小设备空闲状态的时间。就是让那个每一次的前向计算/反向传播的链条尽可能的小,通过加快每一次计算的时间,来降低算力的浪费,那么这个思路就是Gpipe的原型。目前业界常见的流水线并行方法 GPipe 和 PipeDream 都采用微批次流水线并行方案。

Q:为什么不直接并发跑多个 batch,而要拆分当前 batch?

A:(1)最好是跑完一个 batch,得到梯度,更新完参数,再跑下一个,这样比较稳定;(2)多个 batch 同时跑的话,需要保存的中间结果多很多;


 

Gpipe流水线并行

Gpipe并行的原理就是把一个Mini-bacth,拆解成更小的Micro-batches,比如上图的把一个Mini-batch,拆成4个Micro-batches(F0-F3,B3-B0)。

这样做的好处是,当F1也就是前向计算的第一个Micro-batch1被GPU0计算完毕,它就会传递到模型的下一层GPU1,然后GPU0可以继续计算Micro-batch2,以此类推,在同一个计算时间内,尽可能的压榨算力获得更高的性能。

Gpipe 流水线并行主要用来解决这两个问题:

第一,提高模型训练的并行度。Gpipe 在朴素流水线并行的基础上,利用数据并行的思想,将 mini-batch 细分为多个更小的 micro-batch,送入GPU进行训练,来提高并行程度。

上图即为朴素流水线并行与 GPipe 微批次流水线并行对比,通过 GPipe 可以有效降低流水线并行bubble 空间的比例。其中,F的第一个下标表示 GPU 编号,F的第二个下标表示 micro-batch 编号。

假设我们将 mini-batch 划分为 M 个,则 GPipe 流水线并行下, GPipe 流水线 Bubble 时间为:

 O((𝐾−1/(𝐾+𝑀−1))。其中,K为设备,M为将mini-batch切成多少个micro-batch。当M>>K的时候,这个时间可以忽略不计。

但这样做也有一个坏处,那就是把 batch 拆小了之后,对于那些需要统计量的层(如:Batch Normalization),就会导致计算变得麻烦,需要重新实现。在Gpipe中的方法是,在训练时计算和运用的是micro-batch里的均值和方差,同时持续追踪全部mini-batch的移动平均和方差,以便在测试阶段进行使用。这样 Layer Normalization 则不受影响.

简而言之,GPipe 通过纵向对模型进行切分解决了单个设备无法训练大模型的问题;同时,又通过微批量流水线增加了多设备上的并行程度.

上面讲述了 GPipe 流水线并行方案,接下来讲述一下 PipeDream 。讲述 PipeDream之前,我们先来看看流水线并行策略。

流水线并行策略

流水线并行根据执行的策略,可以分为 F-then-B 和 1F1B 两种模式。

之前讲述的朴素流水线并行以及GPipe都是F-then-B模型,而后续讲述的 PipeDream 则是 1F1B 模式。

F-then-B 策略

F-then-B 模式,先进行前向计算,再进行反向计算。

F-then-B 模式由于缓存了多个 micro-batch 的中间变量和梯度,显存的实际利用率并不高。

1F1B 策略

1F1B(One Forward pass followed by One Backward pass)模式,一种前向计算和反向计算交叉进行的方式。在 1F1B 模式下,前向计算和反向计算交叉进行,可以及时释放不必要的中间变量。

1F1B 示例如下图所示,以 stage4 的 F42(stage4 的第 2 个 micro-batch 的前向计算)为例,F42 在计算前,F41 的反向 B41(stage4 的第 1 个 micro-batch 的反向计算)已经计算结束,即可释放 F41 的中间变量,从而 F42 可以复用 F41 中间变量的显存。

研究表明,1F1B 方式相比于 F-then-B 方式,峰值显存可以节省 37.5%,对比朴素流水线并行峰值显存明显下降,设备资源利用率显著提升。

PipeDream(非交错式1F1B)--- DeepSpeed

Gpipe 的流水线有以下几个问题:

  • 将 mini-batch 切分成 m 份 micro-batch 后,将带来更频繁的流水线刷新(Pipeline flush),这降低了硬件效率,导致空闲时间的增加。
  • 将 mini-batch 切分成 m 份 micro-batch 后, 需要缓存 m 份 activation,这将导致内存增加。原因是每个 micro-batch 前向计算的中间结果activation 都要被其后向计算所使用,所以需要在内存中缓存。即使使用了重计算技术,前向计算的 activation 也需要等到对应的后向计算完成之后才能释放。

而微软 DeepSpeed 提出的 PipeDream ,针对这些问题的改进方法就是 1F1B 策略。这种改进策略可以解决缓存 activation 的份数问题,使得 activation 的缓存数量只跟 stage 数相关,从而进一步节省显存,训练更大的模型。其解决思路就是努力减少每个 activation 的保存时间,即这就需要每个微批次数据尽可能早的完成后向计算,从而让每个 activation 尽可能早释放。

注意:微批次在 GPipe 中叫 micro-batch,而在 PipeDream 叫 mini-batch。为了避免干扰,本文统一使用 micro-batch。

PipeDream 具体方案如下:

  • 一个阶段(stage)在做完一次 micro-batch 的前向传播之后,就立即进行 micro-batch 的后向传播,然后释放资源,那么就可以让其他 stage 尽可能早的开始计算,这就是 1F1B 策略。有点类似于把整体同步变成了众多小数据块上的异步,而且众多小数据块都是大家独立更新。
  • 在 1F1B 的稳定状态(steady state,)下,会在每台机器上严格交替的进行前向计算/后向计算,这样使得每个GPU上都会有一个 micro-batch 数据正在处理,从而保证资源的高利用率(整个流水线比较均衡,没有流水线刷新(Pipeline Flush),这样就能确保以固定周期执行每个阶段上的参数更新。
  • 面对流水线带来的异步性,1F1B 使用不同版本的权重来确保训练的有效性

相比 GPipe,表面上看 PipeDream 在Bubble率上并没有优化,PipeDrea 流水线 Bubble 时间仍然为: 𝑂((𝐾−1)/(𝐾+𝑀−1))。但节省了显存之后,在设备显存一定的情况下,就可以通过增大 M 的值(增大micro-batch的个数)来降低Bubble率了。

但是这种算法也带来了一个比较大的问题,如上图所示,当前向传播的5号Micro-batch在Machine1上就开始传递的时候,实际上它使用的权重是Micro-batch 1做完了反向传播之后更新的权重,与此同时,FW2–4并没有完成梯度更新,所以这里存在了一个冲突,在Machine2上,它的FW5又是在Micro-batch1–2做完反向传播的情况下更新的,那么在这个时间段上,Machine1和Machine2的权重又起了冲突,这是第二个冲突。

为了解决这个冲突,在1F1B的基础上,PipeDream引入了Weight stashing和Vertical Sync两种技术来矫正权重的冲突和同步, 说白了就是多版本控制:

  • Weight stashing : 为权重维护多版本,每个active micro-batch一个版本。每个stage 都用最新版本的权重进行前向计算,处理输入的Micro-batch。计算前向传播之后,会将这份参数保存下来用于同一个Micro-batch的后向计算。Weight stashing确保在一个阶段内,相同版本的模型参数被用于给定Micro-batch的向前和向后传播,但是不能保证跨阶段间Mini-batch使用模型参数的一致性。
  • Vertical Sync : 每个Micro-batch进入pipeline时都使用输入stage最新版本的参数,并且参数的版本号会伴随该Micro-batch数据整个生命周期,在各个阶段都是用同一个版本的参数(而不是Weight stashing那样都使用最新版本的参数),从而实现了stage间的参数一致性。

问题1同一个微批次数据相同的device(相同stage),在前向计算和反向计算,采用不同版本的模型参数。
示例

  • Device 1 的微批次5数据,在前向传播使用了第1个版本模型(微批次1反向传播完成),
  • Device 1 的微批次5数据,在反向传播使用了第4个版本模型(微批次1、2、3、4反向传播完成)

解决办法Weight Stashing方法

每个device多备份几个不同版本的权重,确保同一个微批次数据,在前向计算和后向计算采用同一个版本的模型权重。计算前向传播之后,会将这份前向传播使用的权重保存下来,用于同一个 minibatch 的后向计算。

示例

  • Device 1 的 微批次5数据, 在前向传播使用了第1个版本模型(微批次1反向传播完成),
  • Device 1 的 微批次5数据, 在反向传播使用了第1个版本模型(微批次1反向传播完成)

问题2同一个微批次数据相同的操作(都是前向或者都是反向),在不同的device上(不同stage),采用不同版本的模型参数。

示例

  • Device 1 的微批次5数据,在前向传播使用了第1个版本模型(微批次1反向传播完成)
  • Device 2 的微批次5数据,在前向传播使用了第2个版本模型(微批次1、2反向传播完成)

解决方法:Vertical Sync 方法。

每个批次数据进入pipeline时都使用当前device(阶段)最新版本的参数,并且参数版本号会伴随该批次数据整个生命周期,从而实现了device(阶段)间的参数一致性。

示例

  • Device 1 的微批次5数据,在前向传播使用了第1个版本模型(微批次1反向传播完成)
  • Device 2 的微批次5数据,在前向传播使用了第1个版本模型(微批次1反向传播完成)

1F1B 调度(schedule)模式

上面讲述了 PipeDream,在使用 1F1B 策略时,存在两种调度模式:非交错调度和交错式调度。具体如下图所示,上面的部分显示了默认的非交错式调度(non-interleaved schedule),底部显示的是交错式调度(interleaved schedule)。

非交错式调度

非交错式调度可分为三个阶段。

第一阶段:启动热身阶段。微批次的前向传播,直到完成第1个小批次的前向传播。

第二阶段:稳定阶段。交替执行后续微批次的前向传播和反向传播。

第三阶段:结尾阶段。微批次的反向传播,对应着启动热身阶段的前向传播。

上面的讲到微软的 PipeDream 就是使用非交错式 1F1B 调度。虽然,这种调度模式比 GPipe 更节省内存。然而,它需要和 GPipe 一样的时间来完成一轮计算。

交错式调度

在交错式调度中,每个设备可以对多个层的子集(称为模型块)进行计算,而不是一个连续层的集合。

具体来看,在之前非交错式调度中,设备1拥有层1-4,设备2拥有层5-8,以此类推;但在交错式调度中,设备1有层1,2,9,10,设备2有层3,4,11,12,以此类推。在交错式调度模式下,流水线上的每个设备都被分配到多个流水线阶段(虚拟阶段,virtual stages),每个流水线阶段的计算量较少。

这种模式既节省内存又节省时间。但这个调度模式要求 micro-batch 的数量是流水线阶段(Stage)的整数倍。

大模型分布式训练并行技术(三)-流水线并行 - 知乎 (zhihu.com)

LLM分布式训练第三课-模型并行之流水线并行 - kevin zhou - Medium

图解大模型训练之:流水线并行(Pipeline Parallelism),以Gpipe为例 - 知乎 (zhihu.com)
LLM训练06 流水线并行 - 知乎 (zhihu.com)

### LLM Pipeline中的气泡概念 在大型语言模型(LLM)处理过程中,管道(pipeline)是指一系列用于数据预处理、模型训练以及推理的工作流。其中,“气泡”这一术语通常用来描述在并行计算环境中由于某些阶段延迟而导致的资源闲置现象[^1]。 当某个特定的任务执行时间超过预期时,在其后的任务等待期间就会形成所谓的“气泡”。这些气泡代表了未被充分利用的时间窗口,降低了整个系统的效率和吞吐量[^2]。 对于大规模的语言模型而言,这种问题尤为突出,因为它们往往依赖于复杂的多层神经网络结构来进行高效的分布式训练与预测服务部署。如果任何一个节点上的操作变得缓慢,则可能在整个流水线中引发连锁反应,造成更多不必要的等待时间和资源浪费[^3]。 为了缓解这些问题,可以采取多种策略来优化LLM pipeline- **负载均衡**:通过合理分配工作负荷到不同的处理器上,减少单个组件过载的可能性。 - **异步通信机制**:允许各部分独立运行而不必严格同步,从而最小化因个别环节滞后而产生的影响。 - **提前调度算法**:基于历史性能数据分析未来可能出现瓶颈的位置,并预先调整资源配置以防止发生阻塞情况。 ```python import time def simulate_pipeline_stage(stage_name, duration): print(f"Starting {stage_name}") time.sleep(duration) # Simulate processing delay print(f"{stage_name} completed") # Example of a simple pipeline with potential bubbles due to uneven stage durations simulate_pipeline_stage("Data Preprocessing", 2) simulate_pipeline_stage("Model Training", 5) simulate_pipeline_stage("Post-processing", 1) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值