算法书上一直说时间是O(logn),底是多少,重要吗

文章讨论了在算法分析中,通常默认logN的底数为2,因为其相对增长率较大。虽然理论上下文中不同底的logn仅相差常数倍,不影响时间复杂度的实际大小,但选择2为底对于理解复杂度更有利。
摘要由CSDN通过智能技术生成

算法,书上一直说时间是O(logn),但是没有明确说logn的底是什么,这样理解是否准确?

1、
算法分析中logN没有特殊说明应该是默认2为底,因为以2为底的log函数的相对增长率要大于其他底数情况(如底数为3,4,5……)。作为对时间复杂度的估计,底数为2的O(logN)可以看做是log函数型相对增长率的上界;

2、

从理论上,无论低是什么都无关紧要,因为不同底的logn之间只存在常数倍的关系,这与n无关,不会影响复杂度的大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值