深度学习--数据处理dataloader介绍及代码分析

dataloader

概述

参考博客
DataLoader是深度学习中重要的数据处理工具之一,旨在有效加载、处理和管理大规模数据集,用于训练和测试机器学习和深度学习模型。
DataLoader是一个用于批量加载数据的工具,它可以将数据集分成多个小批量(mini-batch),并逐个加载,以适应模型训练的需要。
DataLoader主要用于两个关键任务:数据加载和批次处理

  • 数据加载:DataLoader可以从不同来源加载数据,如硬盘上的文件、数据库、网络等。它能够自动将数据集划分为小批次,从而减小内存需求,确保数据的高效加载。
  • 数据批次处理:每个批次由多个样本组成,可以并行地进行数据预处理和数据增强。这有助于提高模型训练的效率,同时确保每个批次的数据都经过适当的处理。

collate_fn

collate_fn 是一个自定义函数,用于在 PyTorch 的 DataLoader 中定义如何将单个样本组合成一个批次(batch)。具体来说,collate_fn 函数会在每次从 DataLoader 中取出一个批次的数据时被调用,用于对数据进行整理和转换。

主要作用

collate_fn:返回值为最终构建的batch数据;在这一步中处理dataset的数据,将其调整成期望的数据格式。
将一个批次的数据样本整理成适合模型输入的格式,特别是将数据转换为 PyTorch 张量(Tensor),以便于后续的模型训练和推理。

  • 自定义数据堆叠:将单个样本组合成一个批次,处理数据的不同形状或类型。
  • 数据转换:在批次数据组成之前进行必要的转换操作,例如数据类型转换、数据增强等。

在代码中的使用

在本代码中,unet_dataset_collate 函数就是一个 collate_fn 函数。它的作用是将一个批次的数据样本(图像、PNG 数据和分割标签)整理成适合模型输入的格式。具体步骤包括将数据从列表转换为 NumPy 数组,再转换为 PyTorch 张量。

代码详解

# DataLoader中collate_fn使用
def unet_dataset_collate(batch):
    images      = []
    pngs        = []
    seg_labels  = []
    for img, png, labels in batch:
        images.append(img)
        pngs.append(png)
        seg_labels.append(labels)
    images      = torch.from_numpy(np.array(images)).type(torch.FloatTensor)
    pngs        = torch.from_numpy(np.array(pngs)).long()
    seg_labels  = torch.from_numpy(np.array(seg_labels)).type(torch.FloatTensor)
    return images, pngs, seg_labels

这段代码定义了一个名为 unet_dataset_collate 的函数,用于在 PyTorch 的 DataLoader 中自定义批处理方式。函数将一个批次的数据样本(batch)转换为适合模型输入的格式。

代码解释

__init__函数

在 DataLoader 中,init 函数的主要作用是初始化数据集对象,并为后续的数据加载和处理做好准备。
UnetDataset 类的 init 函数在 DataLoader 中的作用包括:

  • 数据集初始化:通过传入的参数(如 annotation_lines、input_shape 等)初始化数据集对象,使其包含所有必要的信息。
  • 数据预处理:在初始化过程中,可以对数据进行预处理,如归一化、裁剪等,以便后续的模型训练。
  • 数据分割:将数据集分割成训练集和验证集(通过 train 参数),以便在训练过程中进行模型评估。
  • 路径管理:通过 dataset_path 参数指定数据集的存储路径,方便数据的加载和管理。
# UnetDataset 类的初始化方法,接受五个参数:annotation_lines、input_shape、num_classes、train 和 dataset_path。
    def __init__(self, annotation_lines, input_shape, num_classes, train, dataset_path):
# super() 函数用于调用父类的初始化方法。在这里,它调用了 UnetDataset 类的父类的 __init__ 方法,确保父类的初始化逻辑也被执行。这对于继承自其他类的类非常重要。
        super(UnetDataset, self).__init__()
# self 代表类的实例。self.annotation_lines 将传入的 annotation_lines 参数赋值给实例属性 annotation_lines
        self.annotation_lines   = annotation_lines
        self.length             = len(annotation_lines)
        self.input_shape        = input_shape
        self.num_classes        = num_classes
        self.train              = train
        self.dataset_path       = dataset_path

解释 super 和 self

  • super
    super() 函数用于调用父类的方法。在多重继承的情况下,它确保正确调用父类的方法,避免重复调用。这里,它调用了 UnetDataset 类的父类的 init 方法。
  • self
    self 是类的实例的引用。它用于访问类的属性和方法。在类的方法中,self 必须作为第一个参数传递,以便方法能够访问实例的属性和其他方法。

collate_fn

# DataLoader中collate_fn使用
# 函数定义:net_dataset_collate(batch):定义了一个函数,接收一个批次的数据样本batch。
def unet_dataset_collate(batch):
# 初始化列表:
# images = []:用于存储所有图像数据。
# pngs = []:用于存储所有 PNG 格式的数据。
# seg_labels = []:用于存储所有分割标签数据
    images      = []
    pngs        = []
    seg_labels  = []
# 遍历批次数据:
# 遍历批次中的每个样本,假设每个样本包含图像、PNG 数据和分割标签。
# images.append(img):将图像数据添加到 images 列表中。
# pngs.append(png):将 PNG 数据添加到 pngs 列表中。
# seg_labels.append(labels):将分割标签数据添加到 seg_labels 列表中。
    for img, png, labels in batch:
        images.append(img)
        pngs.append(png)
        seg_labels.append(labels)
#转换数据类型:
# 将 images 列表转换为 NumPy 数组,再转换为 PyTorch 的 FloatTensor 类型。
# 将 pngs 列表转换为 NumPy 数组,再转换为 PyTorch 的 LongTensor 类型。
# 将 seg_labels 列表转换为 NumPy 数组,再转换为 PyTorch 的 FloatTensor 类型。
    images      = torch.from_numpy(np.array(images)).type(torch.FloatTensor)
    pngs        = torch.from_numpy(np.array(pngs)).long()
    seg_labels  = torch.from_numpy(np.array(seg_labels)).type(torch.FloatTensor)
# 返回结果:
# 返回处理后的图像数据、PNG 数据和分割标签数据。
    return images, pngs, seg_labels

详细说明

  1. 函数定义

    • unet_dataset_collate(batch):定义了一个函数,接收一个批次的数据样本 batch
  2. 初始化列表

    • images = []:用于存储所有图像数据。
    • pngs = []:用于存储所有 PNG 格式的数据。
    • seg_labels = []:用于存储所有分割标签数据。
  3. 遍历批次数据

    • for img, png, labels in batch::遍历批次中的每个样本,假设每个样本包含图像、PNG 数据和分割标签。
    • images.append(img):将图像数据添加到 images 列表中。
    • pngs.append(png):将 PNG 数据添加到 pngs 列表中。
    • seg_labels.append(labels):将分割标签数据添加到 seg_labels 列表中。
  4. 转换数据类型

    • images = torch.from_numpy(np.array(images)).type(torch.FloatTensor):将 images 列表转换为 NumPy 数组,再转换为 PyTorch 的 FloatTensor 类型。
    • pngs = torch.from_numpy(np.array(pngs)).long():将 pngs 列表转换为 NumPy 数组,再转换为 PyTorch 的 LongTensor 类型。
    • seg_labels = torch.from_numpy(np.array(seg_labels)).type(torch.FloatTensor):将 seg_labels 列表转换为 NumPy 数组,再转换为 PyTorch 的 FloatTensor 类型。
  5. 返回结果

    • return images, pngs, seg_labels:返回处理后的图像数据、PNG 数据和分割标签数据。

完整代码

import os

import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data.dataset import Dataset

from utils.utils import cvtColor, preprocess_input


class UnetDataset(Dataset):
    def __init__(self, annotation_lines, input_shape, num_classes, train, dataset_path):
        super(UnetDataset, self).__init__()
        self.annotation_lines   = annotation_lines
        self.length             = len(annotation_lines)
        self.input_shape        = input_shape
        self.num_classes        = num_classes
        self.train              = train
        self.dataset_path       = dataset_path

    def __len__(self):
        return self.length

    def __getitem__(self, index):
        annotation_line = self.annotation_lines[index]
        name            = annotation_line.split()[0]

        #-------------------------------#
        #   从文件中读取图像
        #-------------------------------#
        jpg         = Image.open(os.path.join(os.path.join(self.dataset_path, "JPEGImages"), name + ".jpg"))
        png         = Image.open(os.path.join(os.path.join(self.dataset_path, "SegmentationClass"), name + ".png"))
        #-------------------------------#
        #   数据增强
        #-------------------------------#
        jpg, png    = self.get_random_data(jpg, png, self.input_shape, random = self.train)

        jpg         = np.transpose(preprocess_input(np.array(jpg, np.float64)), [2,0,1])
        png         = np.array(png)
        png[png >= self.num_classes] = self.num_classes
        #-------------------------------------------------------#
        #   转化成one_hot的形式
        #   在这里需要+1是因为voc数据集有些标签具有白边部分
        #   我们需要将白边部分进行忽略,+1的目的是方便忽略。
        #-------------------------------------------------------#
        seg_labels  = np.eye(self.num_classes + 1)[png.reshape([-1])]
        seg_labels  = seg_labels.reshape((int(self.input_shape[0]), int(self.input_shape[1]), self.num_classes + 1))

        return jpg, png, seg_labels

    def rand(self, a=0, b=1):
        return np.random.rand() * (b - a) + a

    def get_random_data(self, image, label, input_shape, jitter=.3, hue=.1, sat=0.7, val=0.3, random=True):
        image   = cvtColor(image)
        label   = Image.fromarray(np.array(label))
        #------------------------------#
        #   获得图像的高宽与目标高宽
        #------------------------------#
        iw, ih  = image.size
        h, w    = input_shape

        if not random:
            iw, ih  = image.size
            scale   = min(w/iw, h/ih)
            nw      = int(iw*scale)
            nh      = int(ih*scale)

            image       = image.resize((nw,nh), Image.BICUBIC)
            new_image   = Image.new('RGB', [w, h], (128,128,128))
            new_image.paste(image, ((w-nw)//2, (h-nh)//2))

            label       = label.resize((nw,nh), Image.NEAREST)
            new_label   = Image.new('L', [w, h], (0))
            new_label.paste(label, ((w-nw)//2, (h-nh)//2))
            return new_image, new_label

        #------------------------------------------#
        #   对图像进行缩放并且进行长和宽的扭曲
        #------------------------------------------#
        new_ar = iw/ih * self.rand(1-jitter,1+jitter) / self.rand(1-jitter,1+jitter)
        scale = self.rand(0.25, 2)
        if new_ar < 1:
            nh = int(scale*h)
            nw = int(nh*new_ar)
        else:
            nw = int(scale*w)
            nh = int(nw/new_ar)
        image = image.resize((nw,nh), Image.BICUBIC)
        label = label.resize((nw,nh), Image.NEAREST)
        
        #------------------------------------------#
        #   翻转图像
        #------------------------------------------#
        flip = self.rand()<.5
        if flip: 
            image = image.transpose(Image.FLIP_LEFT_RIGHT)
            label = label.transpose(Image.FLIP_LEFT_RIGHT)
        
        #------------------------------------------#
        #   将图像多余的部分加上灰条
        #------------------------------------------#
        dx = int(self.rand(0, w-nw))
        dy = int(self.rand(0, h-nh))
        new_image = Image.new('RGB', (w,h), (128,128,128))
        new_label = Image.new('L', (w,h), (0))
        new_image.paste(image, (dx, dy))
        new_label.paste(label, (dx, dy))
        image = new_image
        label = new_label

        image_data      = np.array(image, np.uint8)
        #---------------------------------#
        #   对图像进行色域变换
        #   计算色域变换的参数
        #---------------------------------#
        r               = np.random.uniform(-1, 1, 3) * [hue, sat, val] + 1
        #---------------------------------#
        #   将图像转到HSV上
        #---------------------------------#
        hue, sat, val   = cv2.split(cv2.cvtColor(image_data, cv2.COLOR_RGB2HSV))
        dtype           = image_data.dtype
        #---------------------------------#
        #   应用变换
        #---------------------------------#
        x       = np.arange(0, 256, dtype=r.dtype)
        lut_hue = ((x * r[0]) % 180).astype(dtype)
        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

        image_data = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
        image_data = cv2.cvtColor(image_data, cv2.COLOR_HSV2RGB)
        
        return image_data, label

# DataLoader中collate_fn使用
def unet_dataset_collate(batch):
    images      = []
    pngs        = []
    seg_labels  = []
    for img, png, labels in batch:
        images.append(img)
        pngs.append(png)
        seg_labels.append(labels)
    images      = torch.from_numpy(np.array(images)).type(torch.FloatTensor)
    pngs        = torch.from_numpy(np.array(pngs)).long()
    seg_labels  = torch.from_numpy(np.array(seg_labels)).type(torch.FloatTensor)
    return images, pngs, seg_labels
深度学习算法对图像数据进行处理的代码通常使用深度学习框架来实现,比较常用的框架有TensorFlow、PyTorch、Keras等。 以下是一个使用PyTorch实现图像分类的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义数据预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 加载训练数据 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) # 加载测试数据 testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(2): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 这段代码使用了一个基于卷积神经网络的模型对CIFAR-10数据集进行分类。其中,通过`transforms`定义了数据预处理操作,使用`torchvision.datasets`加载数据集,使用`nn.Module`定义了神经网络模型,使用`nn.CrossEntropyLoss()`定义了损失函数,使用`optim.SGD()`定义了优化器,使用`DataLoader`定义了数据加载器,最后通过训练和测试模型来对模型进行评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值