pytorch学习2之逻辑回归

本文介绍了使用PyTorch实现逻辑回归的训练过程,包括训练结果的展示和数据可视化的讲解。通过`np.linspace`创建等间距样本,并利用`torch.Tensor`和`.view`方法对数据进行转换,以适应模型训练。训练结果显示了损失值随迭代次数的变化,总结部分对关键概念进行了梳理。
摘要由CSDN通过智能技术生成
X_data = torch.Tensor([[1.0],[2.0],[3.0]])
Y_data = torch.Tensor([[0],[0],[1]])

#构建模型
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel,self).__init__()     #继承Module的父类
        self.linear = torch.nn.Linear(1,1)     
    
    def forward(self , x):
        y_pred = torch.sigmoid(self.linear(x))
        return y_pred
model = LogisticRegressionModel()
#构建损失函数
criterion = torch.nn.BCELoss(reduction='sum')
#构建优化器
optimizer = torch.optim.SGD(model.parameters(),lr = 0.01)
#训练模型
for epoch in range(1000): 
    y_pred = model(X_data)
    loss = criterion(y_pred, Y_data)
    print(epoch , loss.item())
    
    #梯度归零
    optimizer.zero_grad()
    loss.backward()
    #更新
    optimizer.step()
    

训练结果:

994 1.08380126953125
995 1.0832830667495728
996 1.0827655792236328
997 1.0822484493255615
998 1.0817

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值