Pytorch代码实践之逻辑回归

逻辑回归 (Logistic Regression)

逻辑回归是线性的二分类模型。模型表达式 ,其中 z=WX+b。f(z) 称为 sigmoid 函数,也被称为 Logistic 函数。在这里插入图片描述

函数曲线如下:(横坐标是 z,而 z=WX+b,纵坐标是 y)
在这里插入图片描述

分类原则如下:当 y<0.5 时,类别为 0;当 0.5 > y$ 时,类别为 1。其中 z=WX+b 就是原来的线性回归的模型。从横坐标来看,当 z<0 时,类别为 0;当 0 <= z 时,类别为 1,直接使用线性回归也可以进行分类。逻辑回归是在线性回归的基础上加入了一个 sigmoid 函数,这是为了更好地描述置信度,把输入映射到 (0,1) 区间中,符合概率取值。
逻辑回归也被称为对数几率回归 在这里插入图片描述
,几率的表达式为:,在这里插入图片描述

y表示正类别的概率,1-y 表示另一个类别的概率。

根据对数几率回归可以推导出逻辑回归表达式:
在这里插入图片描述

PyTorch 实现逻辑回归

在这里插入图片描述

PyTorch 构建模型需要 5 大步骤:

数据:包括数据读取,数据清洗,进行数据划分和数据预处理,比如读取图片如何预处理及数据增强。

模型:包括构建模型模块,组织复杂网络,初始化网络参数,定义网络层。

损失函数:包括创建损失函数,设置损失函数超参数,根据不同任务选择合适的损失函数。

优化器:包括根据梯度使用某种优化器更新参数,管理模型参数,管理多个参数组实现不同学习率,调整学习率。

迭代训练:组织上面 4 个模块进行反复训练。包括观察训练效果,绘制 Loss/ Accuracy 曲线,用 TensorBoard 进行可视化分析。

代码示例:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)

# ============================ step 1/5 生成数据 ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
# 使用正态分布随机生成样本,均值为张量,方差为标量
x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)
# 生成对应标签
y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)
# 使用正态分布随机生成样本,均值为张量,方差为标量
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)
# 生成对应标签
y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)

# ============================ step 2/5 选择模型 ============================
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x

lr_net = LR()   # 实例化逻辑回归模型

# ============================ step 3/5 选择损失函数 ============================
loss_fn = nn.BCELoss()

# ============================ step 4/5 选择优化器   ============================
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

# ============================ step 5/5 模型训练 ============================
for iteration in range(1000):

    # 前向传播
    y_pred = lr_net(train_x)
    # 计算 loss
    loss = loss_fn(y_pred.squeeze(), train_y)
    # 反向传播
    loss.backward()
    # 更新参数
    optimizer.step()
    # 清空梯度
    optimizer.zero_grad()
    # 绘图
    if iteration % 20 == 0:
        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
        correct = (mask == train_y).sum()  # 计算正确预测的样本个数
        acc = correct.item() / train_y.size(0)  # 计算分类准确率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()
        # plt.savefig(str(iteration / 20)+".png")
        plt.show()
        plt.pause(0.5)
        # 如果准确率大于 99%,则停止训练
        if acc > 0.99:
            break

训练的分类直线的可视化如下:

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值