对称与反对称

对称与反对称
根据线代书上的说法,一定存在。
如果a[1][2]=A,a[2][1]=B,那么我们应该求的是(A-B)/2和(A+B)/2,为了使它们为整数,那么应该求2的逆元,根据逆元线性筛,2对m的逆元为=(mod-mod/2)%mod.

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
ll n,mod;
ll a[1100][1100];
int main()
{
  while(~scanf("%lld%lld",&n,&mod))
  {
      ll m=(mod-mod/2)%mod;
      for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
           scanf("%lld",&a[i][j]);
      for(int i=1;i<=n;i++)
      {
          for(int j=1;j<=n;j++)
          {
              if(j!=1) printf(" ");
              printf("%lld",((a[i][j]-a[j][i])*m%mod+mod)%mod);
          }
          printf("\n");
      }
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值