5-1.Dataset和DataLoader

文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。

Pytorch通常使用Dataset和DataLoader这两个工具类来构建数据管道。

Dataset定义了数据集的内容,它相当于一个类似列表的数据结构,具有确定的长度,能够用索引获取数据集中的元素。

而DataLoader定义了按batch加载数据集的方法,它是一个实现了__iter__方法的可迭代对象,每次迭代输出一个batch的数据。

DataLoader能够控制batch的大小,batch中元素的采样方法,以及将batch结果整理成模型所需输入形式的方法,并且能够使用多进程读取数据。

在绝大部分情况下,用户只需实现Dataset的__len__方法和__getitem__方法,就可以轻松构建自己的数据集,并用默认数据管道进行加载。

import torch 
import torchvision

print("torch.__version__="+torch.__version__) 
print("torchvision.__version__="+torchvision.__version__) 

torch.__version__=2.0.1
torchvision.__version__=0.15.2

一,深入理解Dataset和DataLoader原理

1,获取一个batch数据的步骤

让我们考虑一下从一个数据集中获取一个batch的数据需要哪些步骤。

(假定数据集的特征和标签分别表示为张量XY,数据集可以表示为(X,Y), 假定batch大小为m)

1,首先我们要确定数据集的长度n

结果类似:n = 1000

2,然后我们从0n-1的范围中抽样出m个数(batch大小)。

假定m=4, 拿到的结果是一个列表,类似:indices = [1,4,8,9]

3,接着我们从数据集中去取这m个数对应下标的元素。

拿到的结果是一个元组列表,类似:samples = [(X[1],Y[1]),(X[4],Y[4]),(X[8],Y[8]),(X[9],Y[9])]

4,最后我们将结果整理成两个张量作为输出。

拿到的结果是两个张量,类似batch = (features,labels)

其中 features = torch.stack([X[1],X[4],X[8],X[9]])

labels = torch.stack([Y[1],Y[4],Y[8],Y[9]])

2,Dataset和DataLoader的功能分工

上述第1个步骤确定数据集的长度是由 Dataset的__len__ 方法实现的。

第2个步骤从0n-1的范围中抽样出m个数的方法是由 DataLoader的 samplerbatch_sampler参数指定的。

sampler参数指定单个元素抽样方法,一般无需用户设置,程序默认在DataLoader的参数shuffle=True时采用随机抽样,shuffle=False时采用顺序抽样。

batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方法在DataLoader的参数drop_last=True时会丢弃数据集最后一个长度不能被batch大小整除的批次,在drop_last=False时保留最后一个批次。

第3个步骤的核心逻辑根据下标取数据集中的元素 是由 Dataset的 __getitem__方法实现的。

第4个步骤的逻辑由DataLoader的参数collate_fn指定。一般情况下也无需用户设置。

Dataset和DataLoader的一般使用方式如下:

import torch 
from torch.utils.data import TensorDataset,Dataset,DataLoader
from torch.utils.data import RandomSampler,BatchSampler 


ds = TensorDataset(torch.randn(1000,3),
                   torch.randint(low=0,high=2,size=(1000,)).float())
dl = DataLoader(ds,batch_size=4,drop_last = False)
features,labels = next(iter(dl))
print("features = ",features )
print("labels = ",labels )  


features =  tensor([[ 0.4871, -0.4812, -0.0125],
        [-1.0566, -1.1058,  0.1595],
        [ 0.8301,  1.2801, -1.9947],
        [-0.1087,  0.1810, -1.0611]])
labels =  tensor([0., 1., 1., 0.])
features =  tensor([[-0.3979,  0.4728, -0.9796],
        [-1.0995,  0.7045,  0.7593],
        [-0.9703, -0.6259, -0.2886],
        [-1.1529, -0.7042, -0.8151]])
labels =  tensor([1., 0., 0., 0.])

将DataLoader内部调用方式步骤拆解如下:

# step1: 确定数据集长度 (Dataset的 __len__ 方法实现)
ds = TensorDataset(torch.randn(1000,3),
                   torch.randint(low=0,high=2,size=(1000,)).float())
print("n = ", len(ds)) # len(ds)等价于 ds.__len__()

# step2: 确定抽样indices (DataLoader中的 Sampler和BatchSampler实现)
sampler = RandomSampler(data_source = ds)
batch_sampler = BatchSampler(sampler = sampler, 
                             batch_size = 4, drop_last = False)
for idxs in batch_sampler:
    indices = idxs
    break 
print("indices = ",indices)

# step3: 取出一批样本batch (Dataset的 __getitem__ 方法实现)
batch = [ds[i] for i in  indices]  #  ds[i] 等价于 ds.__getitem__(i)
print("batch = ", batch)

# step4: 整理成features和labels (DataLoader 的 collate_fn 方法实现)
def collate_fn(batch):
    features = torch.stack([sample[0] for sample in batch])
    labels = torch.stack([sample[1] for sample in batch])
    return features,labels 

features,labels = collate_fn(batch)
print("features = ",features)
print("labels = ",labels)

n =  1000
indices =  [63, 672, 994, 283]
batch =  [(tensor([-0.0396, -0.2129,  0.9823]), tensor(1.)), (tensor([-1.5184,  0.9135,  0.2675]), tensor(1.)), (tensor([-1.4275,  1.7845, -1.4629]), tensor(0.)), (tensor([-1.2925,  1.2267,  1.0238]), tensor(1.))]
features =  tensor([[-0.0396, -0.2129,  0.9823],
        [-1.5184,  0.9135,  0.2675],
        [-1.4275,  1.7845, -1.4629],
        [-1.2925,  1.2267,  1.0238]])
labels =  tensor([1., 1., 0., 1.])

3,Dataset和DataLoader的核心源码

以下是 Dataset和 DataLoader的核心源码,省略了为了提升性能而引入的诸如多进程读取数据相关的代码。

import torch 
class Dataset(object):
    def __init__(self):
        pass
    
    def __len__(self):
        raise NotImplementedError
        
    def __getitem__(self,index):
        raise NotImplementedError
        

class DataLoader(object):
    def __init__(self,dataset,batch_size,collate_fn = None,shuffle = True,drop_last = False):
        self.dataset = dataset
        self.collate_fn = collate_fn
        self.sampler =torch.utils.data.RandomSampler if shuffle else \
           torch.utils.data.SequentialSampler
        self.batch_sampler = torch.utils.data.BatchSampler
        self.sample_iter = self.batch_sampler(
            self.sampler(self.dataset),
            batch_size = batch_size,drop_last = drop_last)
        self.collate_fn = collate_fn if collate_fn is not None else \
            torch.utils.data._utils.collate.default_collate
        
    def __next__(self):
        indices = next(iter(self.sample_iter))
        batch = self.collate_fn([self.dataset[i] for i in indices])
        return batch
    
    def __iter__(self):
        return self
    

我们来测试一番

class ToyDataset(Dataset):
    def __init__(self,X,Y):
        self.X = X
        self.Y = Y 
    def __len__(self):
        return len(self.X)
    def __getitem__(self,index):
        return self.X[index],self.Y[index]
    
X,Y = torch.randn(1000,3),torch.randint(low=0,high=2,size=(1000,)).float()
ds = ToyDataset(X,Y)

dl = DataLoader(ds,batch_size=4,drop_last = False)
features,labels = next(iter(dl))
print("features = ",features )
print("labels = ",labels )  
features =  tensor([[-0.8581, -1.1772,  0.1349],
        [ 0.7672, -0.1178, -0.1553],
        [ 1.4551,  1.9753,  1.4102],
        [-0.1069, -0.6730, -0.2066]])
labels =  tensor([0., 0., 0., 1.])
features =  tensor([[ 0.6718, -0.5819,  0.9362],
        [-0.4208, -0.1517,  0.3838],
        [ 2.1848, -1.2617,  0.7580],
        [ 0.1418, -1.6424,  0.3673]])
labels =  tensor([0., 1., 1., 0.])

完美, 和预期一致!

二,使用Dataset创建数据集

Dataset创建数据集常用的方法有:

  • 使用 torch.utils.data.TensorDataset 根据Tensor创建数据集(numpy的array,Pandas的DataFrame需要先转换成Tensor)。

  • 使用 torchvision.datasets.ImageFolder 根据图片目录创建图片数据集。

  • 继承 torch.utils.data.Dataset 创建自定义数据集。

此外,还可以通过

  • torch.utils.data.random_split 将一个数据集分割成多份,常用于分割训练集,验证集和测试集。

  • 调用Dataset的加法运算符(+)将多个数据集合并成一个数据集。

1,根据Tensor创建数据集

import numpy as np 
import torch 
from torch.utils.data import TensorDataset,Dataset,DataLoader,random_split 

# 根据Tensor创建数据集

from sklearn import datasets 
iris = datasets.load_iris()
ds_iris = TensorDataset(torch.tensor(iris.data),torch.tensor(iris.target))

# 分割成训练集和预测集
n_train = int(len(ds_iris)*0.8)
n_val = len(ds_iris) - n_train
ds_train,ds_val = random_split(ds_iris,[n_train,n_val])

print(type(ds_iris))
print(type(ds_train))

<class 'torch.utils.data.dataset.TensorDataset'>
<class 'torch.utils.data.dataset.Subset'>
# 使用DataLoader加载数据集
dl_train,dl_val = DataLoader(ds_train,batch_size = 8),DataLoader(ds_val,batch_size = 8)

for features,labels in dl_train:
    print(features,labels)
    break
tensor([[5.6000, 3.0000, 4.1000, 1.3000],
        [5.1000, 3.8000, 1.6000, 0.2000],
        [4.8000, 3.0000, 1.4000, 0.3000],
        [4.8000, 3.0000, 1.4000, 0.1000],
        [6.4000, 3.2000, 5.3000, 2.3000],
        [4.4000, 3.2000, 1.3000, 0.2000],
        [5.6000, 2.9000, 3.6000, 1.3000],
        [6.3000, 2.9000, 5.6000, 1.8000]], dtype=torch.float64) tensor([1, 0, 0, 0, 2, 0, 1, 2])
# 演示加法运算符(`+`)的合并作用

ds_data = ds_train + ds_val

print('len(ds_train) = ',len(ds_train))
print('len(ds_valid) = ',len(ds_val))
print('len(ds_train+ds_valid) = ',len(ds_data))

print(type(ds_data))

len(ds_train) =  120
len(ds_valid) =  30
len(ds_train+ds_valid) =  150
<class 'torch.utils.data.dataset.ConcatDataset'>

2,根据图片目录创建图片数据集

import numpy as np 
import torch 
from torch.utils.data import DataLoader
from torchvision import transforms,datasets 

#演示一些常用的图片增强操作
from PIL import Image
img = Image.open('./data/cat.jpeg')
img
# 随机数值翻转
transforms.RandomVerticalFlip()(img)
#随机旋转
transforms.RandomRotation(45)(img)
# 定义图片增强操作

transform_train = transforms.Compose([
   transforms.RandomHorizontalFlip(), #随机水平翻转
   transforms.RandomVerticalFlip(), #随机垂直翻转
   transforms.RandomRotation(45),  #随机在45度角度内旋转
   transforms.ToTensor() #转换成张量
  ]
) 

transform_valid = transforms.Compose([
    transforms.ToTensor()
  ]
)

# 根据图片目录创建数据集

def transform_label(x):
    return torch.tensor([x]).float()

ds_train = datasets.ImageFolder("./eat_pytorch_datasets/cifar2/train/",
            transform = transform_train,target_transform= transform_label)
ds_val = datasets.ImageFolder("./eat_pytorch_datasets/cifar2/test/",
                              transform = transform_valid,
                              target_transform= transform_label)


print(ds_train.class_to_idx)

# 使用DataLoader加载数据集

dl_train = DataLoader(ds_train,batch_size = 50,shuffle = True)
dl_val = DataLoader(ds_val,batch_size = 50,shuffle = True)


for features,labels in dl_train:
    print(features.shape)
    print(labels.shape)
    break
    
{'0_airplane': 0, '1_automobile': 1}
torch.Size([50, 3, 32, 32])
torch.Size([50, 1])

3,创建自定义数据集

下面我们通过另外一种方式,即继承 torch.utils.data.Dataset 创建自定义数据集的方式来对 cifar2构建 数据管道。

from pathlib import Path 
from PIL import Image 

class Cifar2Dataset(Dataset):
    def __init__(self,imgs_dir,img_transform):
        self.files = list(Path(imgs_dir).rglob("*.jpg"))
        self.transform = img_transform
        
    def __len__(self,):
        return len(self.files)
    
    def __getitem__(self,i):
        file_i = str(self.files[i])
        img = Image.open(file_i)
        tensor = self.transform(img)
        label = torch.tensor([1.0]) if  "1_automobile" in file_i else torch.tensor([0.0])
        return tensor,label 
    
    
train_dir = "./eat_pytorch_datasets/cifar2/train/"
test_dir = "./eat_pytorch_datasets/cifar2/test/"

            
# 定义图片增强
transform_train = transforms.Compose([
   transforms.RandomHorizontalFlip(), #随机水平翻转
   transforms.RandomVerticalFlip(), #随机垂直翻转
   transforms.RandomRotation(45),  #随机在45度角度内旋转
   transforms.ToTensor() #转换成张量
  ]
) 

transform_val = transforms.Compose([
    transforms.ToTensor()
  ]
)
ds_train = Cifar2Dataset(train_dir,transform_train)
ds_val = Cifar2Dataset(test_dir,transform_val)


dl_train = DataLoader(ds_train,batch_size = 50,shuffle = True)
dl_val = DataLoader(ds_val,batch_size = 50,shuffle = True)


for features,labels in dl_train:
    print(features.shape)
    print(labels.shape)
    break
    

torch.Size([50, 3, 32, 32])
torch.Size([50, 1])

三,使用DataLoader加载数据集

DataLoader能够控制batch的大小,batch中元素的采样方法,以及将batch结果整理成模型所需输入形式的方法,并且能够使用多进程读取数据。

DataLoader的函数签名如下。

DataLoader(
    dataset,
    batch_size=1,
    shuffle=False,
    sampler=None,
    batch_sampler=None,
    num_workers=0,
    collate_fn=None,
    pin_memory=False,
    drop_last=False,
    timeout=0,
    worker_init_fn=None,
    multiprocessing_context=None,
)

一般情况下,我们仅仅会配置 dataset, batch_size, shuffle, num_workers,pin_memory, drop_last这六个参数,

有时候对于一些复杂结构的数据集,还需要自定义collate_fn函数,其他参数一般使用默认值即可。

DataLoader除了可以加载我们前面讲的 torch.utils.data.Dataset 外,还能够加载另外一种数据集 torch.utils.data.IterableDataset。

和Dataset数据集相当于一种列表结构不同,IterableDataset相当于一种迭代器结构。 它更加复杂,一般较少使用。

  • dataset : 数据集
  • batch_size: 批次大小
  • shuffle: 是否乱序
  • sampler: 样本采样函数,一般无需设置。
  • batch_sampler: 批次采样函数,一般无需设置。
  • num_workers: 使用多进程读取数据,设置的进程数。
  • collate_fn: 整理一个批次数据的函数。
  • pin_memory: 是否设置为锁业内存。默认为False,锁业内存不会使用虚拟内存(硬盘),从锁业内存拷贝到GPU上速度会更快。
  • drop_last: 是否丢弃最后一个样本数量不足batch_size批次数据。
  • timeout: 加载一个数据批次的最长等待时间,一般无需设置。
  • worker_init_fn: 每个worker中dataset的初始化函数,常用于 IterableDataset。一般不使用。
#构建输入数据管道
ds = TensorDataset(torch.arange(1,50))
dl = DataLoader(ds,
                batch_size = 10,
                shuffle= True,
                num_workers=2,
                drop_last = True)
#迭代数据
for batch, in dl:
    print(batch)
tensor([45, 49, 27,  7, 32, 48, 19, 38, 35, 30])
tensor([44, 37, 21, 39, 29, 13,  8, 31, 33,  5])
tensor([34, 28,  2, 23, 15, 42, 43, 40, 22,  6])
tensor([36,  3, 46,  9, 26, 16, 12, 17, 18,  1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值