2705: [SDOI2012]Longge的问题 欧拉函数

17 篇文章 0 订阅

Description


Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
Input


一个整数,为N。
Output


一个整数,为所求的答案。
Sample Input


6


Sample Output


15


枚举每个约数k,如果gcd(m,n)=k,则gcd(m/k,n/k)=k ,则ans+=k*(phi(n/k))。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std;
#define ll long long
ll phi(ll n);
int main()
{
	int n, sum, m;
	ll ans;
	while (scanf("%d", &n) != EOF)
	{
		ans = 0;
		for (int i = 1;i <= sqrt(n);i++)
		{
			if (n%i == 0)
			{
				ans += phi(n / i)*i;
				if (i*i < n) ans += n / i*phi(i);
			}
		}
		printf("%lld\n", ans);
	}
}
ll phi(ll n)
{
	ll ans = n, i;
	for (i = 2; i*i <= n; i++)
	{
		if (n%i == 0)
		{
			ans = ans / i*(i - 1);
			while (n%i == 0)n = n / i;
		}
	}
	if (n>1)ans = ans / n*(n - 1);
	return ans;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值