Sequence I
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 3226 Accepted Submission(s): 1181
Problem Description
Mr. Frog has two sequences
a1,a2,⋯,an
and
b1,b2,⋯,bm
and a number p. He wants to know the number of positions q such that sequence
b1,b2,⋯,bm
is exactly the sequence
aq,aq+p,aq+2p,⋯,aq+(m−1)p
where
q+(m−1)p≤n
and
q≥1
.
Input
The first line contains only one integer
T≤100
, which indicates the number of test cases.
Each test case contains three lines.
The first line contains three space-separated integers 1≤n≤106,1≤m≤106 and 1≤p≤106 .
The second line contains n integers a1,a2,⋯,an(1≤ai≤109) .
the third line contains m integers b1,b2,⋯,bm(1≤bi≤109) .
Each test case contains three lines.
The first line contains three space-separated integers 1≤n≤106,1≤m≤106 and 1≤p≤106 .
The second line contains n integers a1,a2,⋯,an(1≤ai≤109) .
the third line contains m integers b1,b2,⋯,bm(1≤bi≤109) .
Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s.
Sample Input
2 6 3 1 1 2 3 1 2 3 1 2 3 6 3 2 1 3 2 2 3 1 1 2 3
Sample Output
Case #1: 2Case #2: 1
每次生成间隔为q的序列,再用kmp匹配。
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; const int maxm = 100005; int a[maxm], b[maxm], p[maxm], vis[maxm], c[maxm], len, n, m; void find() { int i, j = -1; p[0] = -1; for (i = 1;i < m;i++) { while (j >= 0 && b[j + 1] != b[i]) j = p[j]; if (b[j + 1] == b[i]) j++; p[i] = j; } } int kmp() { int i, j = -1, ans = 0; for (i = 0;i < len;i++) { while (j >= 0 && b[j + 1] != a[i]) j = p[j]; if (b[j + 1] == a[i]) j++; if (j == m - 1) j = p[j], ans++; } return ans; } int main() { int i, j, k, sum, t, ans, cas = 0; scanf("%d", &t); while (t--) { scanf("%d%d%d", &n, &m, &k); memset(vis, 0, sizeof(vis)); for (i = 0;i < n;i++) scanf("%d", &c[i]); for (i = 0;i < m;i++) scanf("%d", &b[i]); find();ans = 0; for (i = 0;i < n;i++) { if (!vis[i]) { len = 0; for (j = i;j < n;j += k) a[len++] = c[j], vis[j] = 1; ans += kmp(); //printf("%d\n", ans); } } printf("Case #%d: %d\n",++cas, ans); } return 0; }