M/M/1 排队论模型

本文详细介绍了M/M/1排队论模型,包括其基本概念、数学公式以及一个医院急诊室的应用案例。该模型中,顾客到达遵循泊松过程,服务时间服从指数分布。通过计算,得出在特定服务率和到达率下,系统内平均顾客数、等待人数及其平均等待时间等关键指标。
摘要由CSDN通过智能技术生成

M/M/1 排队论模型

1.M/M/1 模型简单介绍

  • 到达时间是泊松过程(Poisson process);
  • 服务时间是指数分布(exponentially distributed);
  • 只有一部服务器(server)
  • 队列长度无限制
  • 可加入队列的人数为无限

这种模型是一种出生-死亡过程,此随机过程中的每一个状态代表模型中人数的数目。因为模型的队列长度无限且参与人数亦无限,故此状态数目亦为无限。例如状态0表示模型闲置、状态1表示模型有一人在接受服务、状态2表示模型有二人(一人正接受服务、一人在等候),如此类推。 此模型中,出生率(即加入队列的速率)λ在各状态中均相同,死亡率(即完成服务离开队列的速率)μ亦在各状态中相同(除了状态0,因其不可能有人离开队列)。故此,在任何状态下,只有两种事情可能发生:
有人加入队列。如果模型在状态k,它会以速率λ进入状态k + 1
有人离开队列。如果模型在状态k(k不等于0),它会以速率μ进入状态k − 1
由此可见,模型的隐定条件为λ < μ。如果死亡率小于出生率,则队列中的平均人数为无限大,故此这种系统没有平衡点。

2.排队模型示例

对于M /M /1 模型有如下公式
在这里插入图片描述

µ: 单位时间服务的顾客数,平均( 期望) 服务率;
λ: 单位时间前来的顾客数。
Ls :队长 ,系统中的顾客数(n)期望值
Lq:排队长 ,系统中排队等待服务的顾客数; 期望值记为Lq
Ws:逗留时间:—— 指一个顾客在系统中的全部停留时间 为 期望值,记为 Ws
Wq: 等待时间: —— 指一个顾客在系统中的排队等待时间为 期望值,记为 Wq

Ws=Wq + E[ 服务时间]
s : 服务台数目
服务强度:ρ = λ/sµ

3.M/M/1 模型例子

某医院急诊室同时只能诊治一个病人,诊治时间服从指数分布,每个病人平均需要 15 分钟。病人按泊松分布到达,平均每小时到达3 3 人。试对此排队队系统进行分析。
解: 对此排队队系统分析如下:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

代码:

% =================================================================需要改的地方
s=1;    %服务台个数
mu=4;   %单个服务台单个时间内能服务的个数
lambda=3;   %单位时间到达的顾客数
% =================================================================需要改的地方

ro=lambda/mu;
ros=ro/s;
sum1=0;

for i=0:(s-1)
    sum1=sum1+ro.^i/factorial(i);
end

sum2=ro.^s/factorial(s)/(1-ros);

p0=1/(sum1+sum2);
p=ro.^s.*p0/factorial(s)/(1-ros);
Lq=p.*ros/(1-ros);
L=Lq+ro;
W=L/lambda;
Wq=Lq/lambda;
fprintf('排队等待的平均人数为%5.2f人\n',Lq)
fprintf('系统内的平均人数为%5.2f人\n',L)
fprintf('平均逗留时间为%5.2f分钟\n',W*60)
fprintf('平均等待时间为%5.2f分种\n',Wq*60)

结果:

排队等待的平均人数为 2.25人
系统内的平均人数为 3.00人
平均逗留时间为60.00分钟
平均等待时间为45.00分种

以上内容参考:https://blog.csdn.net/qq_39481214/article/details/82185050

M/G/1队列模型是一种排队论模型,用来描述顾客到达一个系统中,然后进行服务的过程。在该模型中,"M"代表到达时间服从泊松分布,即到达顾客之间的时间间隔是随机的且符合指数分布;"G"代表服务时间服从一般分布,即每个顾客所需的服务时间是随机的,可以符合任意分布;"1"代表只有一个服务员,即只有一个服务通道。 在M/G/1队列模型中,假设到达的顾客数目无限,每个顾客的到达时间和服务时间是相互独立的。当一个顾客到达时,如果服务通道空闲,则立即开始服务;如果服务通道忙碌,则该顾客进入一个排队等待服务的队列中。当当前顾客的服务完成后,下一个顾客开始接受服务。 我们常常关心的指标是平均等待时间和系统繁忙度。平均等待时间是指顾客在队列中等待服务的平均时间,它受到到达率和服务率的影响。系统繁忙度是指服务通道的利用率,即服务通道忙碌的时间占总时间的比例,它反映系统的效率。 要计算平均等待时间和系统繁忙度,需要知道到达率和服务率。当到达率小于服务率时,系统可以达到稳定状态,此时可以使用利特尔公式计算平均队长和平均等待时间。当到达率等于或大于服务率时,系统无法达到稳定状态。 总之,M/G/1队列模型通过考虑到达时间和服务时间的不确定性,可以对实际排队系统进行建模和分析,从而帮助我们优化系统性能,提高服务质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值