离群值检验方法简介
设有一组正态样本的观测值,按其大小顺序排列为x1,x2,x3,……,xn。其中最小值x1或最大值xn为离群值(xout)。对于离群值的统计检验,大都是建立在被检测的总体服从正态分布。基于此,在给定的检出水平或显著水平α (通常取值为0.05和0.01)和样本容量n条件下,可查表获得临界值,再通过计算统计量后与临界值比较,若统计量大于临界值就判为异常。临界值表通常给出的是置信度P,对双侧检验而言,P = 1 - α/2;对单侧检验而言,P = 1 - α。
标准偏差已知情况
采用奈尔检验法
标准偏差未知情况(离群值数量为1时)
常用的几种方法:拉依达法(3σ准则)、4d法、肖维勒(Chauvenet)法、t检验法、格鲁布斯(Grubbs)检验法、狄克逊(Dixon)检验法(样本容量3 ≤ n ≤ 30)、Q检验法
标准偏差未知情况(离群值数量大于1时)
常用的几种方法:偏度-峰度检验法、狄克逊(Dixon)检验法、格鲁布斯(Grubbs)检验法
参考文献:https://blog.csdn.net/qq_19446965/article/details/89395190