用清华源配置GPU版Pytorch2.0.0和Tensorflow2.6.0两个虚拟环境;并添加到jupyter notebook内核。cuda11.8+可以进来拿命令直接用

1.打开你的Anaconda Prompt。

2. 创建一个名为“torch”的python3.8的虚拟环境。(我的路径为D:\Anaconda\envs,可自行修改)

conda create --prefix D:\Anaconda\envs\torch python=3.8
conda activate D:\Anaconda\envs\torch

将默认的包索引 URL 更改为清华大学的镜像站点!!!

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

3.下载GPU版Pytorch2.0.0

现在下载GPU版Pytorch,有些包清华源没有,所以这里指定的是pytorch官方源。不过不用担心,下载时会先从清华源把主题部分下载完,后面体积较小的包慢慢也能从官方源下载成功。大概要二十来分钟,要求网络稳定,不然下载速度可能会变得很慢然后下载失败,多试几次也能成功下载!

pip install torch==2.0.0+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html

4. 下载jupyter

现在还是在虚拟环境torch中,然后依次运行:

pip install jupyter

进入你的虚拟环境torch文件夹的Scripts文件夹下

cd  D:\Anaconda\envs\torch\Scripts

将虚拟环境torch添加进jupyter内核中

python.exe -m ipykernel install --user --name=torch

下载jupyter中文包

pip install jupyterlab-language-pack-zh-CN

5. 启动jupyter

还是在你的torch虚拟环境的Scripts文件夹下执行:

jupyter-notebook --notebook-dir=D:\....(改为你想打开的路径)

下面是安装GPU版tensorflow的命令,每个包的版本都指定好了,流程和上面一样,就不做解释了

conda create --prefix D:\Anaconda\envs\tf python=3.8

conda activate D:\Anaconda\envs\tf

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install protobuf==3.20.0

pip install numpy==1.19.5

conda install -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge cudnn=8.1.0.77

pip install tensorflow-gpu==2.6.0

pip install matplotlib==3.3.4

pip install scikit-learn==0.24.1

pip install pandas==1.2.0

pip install keras==2.6

pip install seaborn==0.9.0



pip install jupyter

cd  D:\Anaconda\envs\torch\Scripts

python.exe -m ipykernel install --user --name=tf

pip install jupyterlab-language-pack-zh-CN

### 安装带有CUDA 11.8支持的PyTorch 为了确保安装过程顺利获得最佳性能,建议创建一个新的Python虚拟环境来隔离依赖项。对于特定本的需求,如PyTorch 2.0.0 CUDA 11.8的支持,可以按照如下方法操作: #### 创建虚拟环境激活 首先,通过Conda工具创建名为`unet_cuda11.8_torch2.0.0`的新环境,指定Python本为3.8,同时设置清华镜像作为软件包来源以加快下载速度[^1]。 ```bash conda create -n unet_cuda11.8_torch2.0.0 python=3.8 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main ``` 接着,激活新创建的环境以便后续命令在此环境中执行: ```bash conda activate unet_cuda11.8_torch2.0.0 ``` #### 使用官方推荐的方式安装PyTorch 访问[PyTorch官方网站](https://pytorch.org/)获取最新的安装指令。通常情况下,网站会提供针对不同操作系统、CUDA本以及安装方式(如pip或conda)的具体指导。鉴于已经配置好的CUDA环境,应该选择与之匹配的PyTorch本进行安装。如果遇到问题,比如GPU不可见的情况,则需确认是否意外安装了CPU-only本的PyTorch[^3]。 对于希望利用CUDA 11.8加速的应用场景而言,推荐采用以下conda命令完成安装,这能有效避免潜在兼容性问题的同时也确保所有必要的库都被正确加载: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia -c conda-forge ``` 需要注意的是,在某些特殊情况下,可能需要手动调整渠道优先级或者尝试其他可靠的第三方镜像源,例如清华大学开源软件镜像站,以解决可能出现的网络连接失败等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值