第十章 番外 拉格朗日乘子法

拉格朗日乘子法(Lagrange Multiplier Method)是一种解决带有等式约束的优化问题的方法。这种方法可以用来求解最优化问题中的约束条件,特别是在支持向量机(SVM)中用于寻找最大间隔超平面时非常有用。

基本原理

假设我们有一个目标函数 f ( x ) f(\mathbf{x}) f(x)需要优化,并且存在一个或多个等式约束条件 g i ( x ) = c i g_i(\mathbf{x}) = c_i gi(x)=ci,其中 x \mathbf{x} x 是变量向量, g i ( x ) g_i(\mathbf{x}) gi(x) 是约束函数, c i c_i ci 是常数。拉格朗日乘子法构造了一个新的函数——拉格朗日函数 L ( x , λ ) \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) L(x,λ),其中 λ \boldsymbol{\lambda} λ 是拉格朗日乘子向量。拉格朗日函数的形式为:
L ( x , λ ) = f ( x ) − ∑ i = 1 m λ i [ g i ( x ) − c i ] . \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i [g_i(\mathbf{x}) - c_i]. L(x,λ)=f(x)i=1mλi[gi(x)ci].

求解步骤

  1. 构造拉格朗日函数:基于原始问题构造拉格朗日函数。
  2. 求解偏导数:对拉格朗日函数关于变量 x \mathbf{x} x λ \boldsymbol{\lambda} λ 求偏导数,并令它们等于零。
  3. 求解方程组:解由偏导数组成的方程组,得到最优解 x ∗ \mathbf{x}^* x 和相应的拉格朗日乘子 λ ∗ \boldsymbol{\lambda}^* λ

解释

  • 无约束问题:当不存在约束时,我们直接对目标函数求导,令导数等于零来找到极值点。
  • 带约束问题:当存在约束条件时,我们不能简单地对目标函数求导,因为约束条件限制了变量的取值范围。此时,拉格朗日乘子法为我们提供了一种途径,它将约束条件纳入目标函数中,使得问题可以像无约束问题那样求解。
  • 22
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
拉格朗日乘子法是一种优化算法,应用于具有约束条件的优化问题。它的原理是基于拉格朗日乘子的概念,在求解有约束问题的时候,将约束条件转化为目标函数的一部分,通过求解该新的目标函数,得到问题的最优解。 在使用拉格朗日乘子法时,首先根据问题的约束条件构造拉格朗日函数。拉格朗日函数是由目标函数和约束条件组成的,目标函数会被调整为加入拉格朗日乘子与约束条件的乘积,同时每个约束条件都会有一个对应的拉格朗日乘子。然后,通过求取拉格朗日函数的偏导数,将其等于0,可以得到一组方程,包括目标函数的梯度和约束条件的梯度。将这些方程联立求解,就可以得到问题的最优解。 对于拉格朗日函数的求解,可以采用数值方法,例如使用fmincon算法。fmincon是一种非线性约束最小化算法,可以求解具有非线性约束的优化问题。它的实现基于拉格朗日乘子法,通过迭代的方式逼近最优解。在每一次迭代中,通过求解一组子问题,不断调整拉格朗日乘子的值,直到找到最优解为止。 总之,拉格朗日乘子法是一种基于拉格朗日函数的优化算法,通过将约束条件转化为目标函数的一部分,再利用数值方法求解最优解。而fmincon算法则是一种具体的数值方法实现,可以应用于求解具有非线性约束的优化问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值