保姆级使用PyTorch训练与评估自己的EfficientNetV2网络教程

在这里插入图片描述

前言

项目地址:https://github.com/Fafa-DL/Awesome-Backbones

操作教程:https://www.bilibili.com/video/BV1SY411P7Nd

EfficientNetV2原论文:点我跳转

如果你以为该仓库仅支持训练一个模型那就大错特错了,我在项目地址放了目前支持的42种模型(LeNet5、AlexNet、VGG、DenseNet、ResNet、Wide-ResNet、ResNeXt、SEResNet、SEResNeXt、RegNet、MobileNetV2、MobileNetV3、ShuffleNetV1、ShuffleNetV2、EfficientNet、RepVGG、Res2Net、ConvNeXt、HRNet、ConvMixer、CSPNet、Swin-Transformer、Vision-Transformer、Transformer-in-Transformer、MLP-Mixer、DeiT、Conformer、T2T-ViT、Twins、PoolFormer、VAN、HorNet、EfficientFormer、Swin Transformer V2、MViT V2、MobileViT、DaViT、RepLKNet、BEiT、EVA、MixMIM、EfficientNetV2),使用方式一模一样。且目前满足了大部分图像分类需求,进度快的同学甚至论文已经在审了

0. 环境搭建&快速开始

  • 这一步我也在最近录制了视频

最新Windows配置VSCode与Anaconda环境

『图像分类』从零环境搭建&快速开始

  • 不想看视频也将文字版放在此处。建议使用Anaconda进行环境管理,创建环境命令如下
conda create -n [name] python=3.6 其中[name]改成自己的环境名,如[name]->torch,conda create -n torch python=3.6
  • 我的测试环境如下
torch==1.7.1
torchvision==0.8.2
scipy==1.4.1
numpy==1.19.2
matplotlib==3.2.1
opencv_python==3.4.1.15
tqdm==4.62.3
Pillow==8.4.0
h5py==3.1.0
terminaltables==3.1.0
packaging==21.3
  • 首先安装Pytorch。建议版本和我一致,进入Pytorch官网,点击 install previous versions of PyTorch,以1.7.1为例,官网给出的安装如下,选择合适的cuda版本
# CUDA 11.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

# CUDA 10.2
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2

# CUDA 10.1
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

# CUDA 9.2
pip install torch==1.7.1+cu92 torchvision==0.8.2+cu92 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

# CPU only
pip install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
  • 安装完Pytorch后,再运行
pip install -r requirements.txt
python tools/single_test.py datas/cat-dog.png models/mobilenet/mobilenet_v3_small.py --classes-map datas/imageNet1kAnnotation.txt

1. 数据集制作

1.1 标签文件制作

  • 将项目代码下载到本地
    在这里插入图片描述

  • 本次演示以花卉数据集为例,目录结构如下:

├─flower_photos
│  ├─daisy
│  │      100080576_f52e8ee070_n.jpg
│  │      10140303196_b88d3d6cec.jpg
│  │      ...
│  ├─dandelion
│  │      10043234166_e6dd915111_n.jpg
│  │      10200780773_c6051a7d71_n.jpg
│  │      ...
│  ├─roses
│  │      10090824183_d02c613f10_m.jpg
│  │      102501987_3cdb8e5394_n.jpg
│  │      ...
│  ├─sunflowers
│  │      1008566138_6927679c8a.jpg
│  │      1022552002_2b93faf9e7_n.jpg
│  │      ...
│  └─tulips
│  │      100930342_92e8746431_n.jpg
│  │      10094729603_eeca3f2cb6.jpg
│  │      ...
  • Awesome-Backbones/datas/中创建标签文件annotations.txt,按行将类别名 索引写入文件;
daisy 0
dandelion 1
roses 2
sunflowers 3
tulips 4

在这里插入图片描述

1.2 数据集划分

  • 打开Awesome-Backbones/tools/split_data.py
  • 修改原始数据集路径以及划分后的保存路径,强烈建议划分后的保存路径datasets不要改动,在下一步都是默认基于文件夹进行操作
init_dataset = 'A:/flower_photos' # 改为你自己的数据路径
new_dataset = 'A:/Awesome-Backbones/datasets'
  • Awesome-Backbones/下打开终端输入命令:
python tools/split_data.py
  • 得到划分后的数据集格式如下:
├─...
├─datasets
│  ├─test
│  │  ├─daisy
│  │  ├─dandelion
│  │  ├─roses
│  │  ├─sunflowers
│  │  └─tulips
│  └─train
│      ├─daisy
│      ├─dandelion
│      ├─roses
│      ├─sunflowers
│      └─tulips
├─...

1.3 数据集信息文件制作

  • 确保划分后的数据集是在Awesome-Backbones/datasets下,若不在则在get_annotation.py下修改数据集路径;
datasets_path   = '你的数据集路径'
  • Awesome-Backbones/下打开终端输入命令:
python tools/get_annotation.py
  • Awesome-Backbones/datas下得到生成的数据集信息文件train.txttest.txt
    在这里插入图片描述

2. 修改参数文件

  • 每个模型均对应有各自的配置文件,保存在Awesome-Backbones/models

  • backboneneckheadhead.loss构成一个完整模型

  • 找到EfficientNetV2参数配置文件,可以看到所有支持的类型都在这,且每个模型均提供预训练权重
    在这里插入图片描述

  • model_cfg中修改num_classes为自己数据集类别大小

  • 按照自己电脑性能在data_cfg中修改batch_sizenum_workers

  • 若有预训练权重则可以将pretrained_weights设置为True并将预训练权重的路径赋值给pretrained_weights

  • 若需要冻结训练则freeze_flag 设置为True,可选冻结的有backbone, neck, head

  • optimizer_cfg中修改初始学习率,根据自己batch size调试,若使用了预训练权重,建议学习率调小

  • 学习率更新详见core/optimizers/lr_update.py,同样准备了视频『图像分类』学习率更新策略|优化器

  • 更具体配置文件修改可参考配置文件解释,同样准备了视频『图像分类』配置文件补充说明

3. 训练

  • 确认Awesome-Backbones/datas/annotations.txt标签准备完毕
  • 确认Awesome-Backbones/datas/train.txttest.txtannotations.txt对应
  • 选择想要训练的模型,在Awesome-Backbones/models/下找到对应配置文件,以efficientnetv2_b0为例
  • 按照配置文件解释修改参数
  • Awesome-Backbones路径下打开终端运行
python tools/train.py models/efficientnetv2/efficientnetv2_b0.py

在这里插入图片描述

4. 评估

  • 确认Awesome-Backbones/datas/annotations.txt标签准备完毕
  • 确认Awesome-Backbones/datas/test.txtannotations.txt对应
  • Awesome-Backbones/models/下找到对应配置文件
  • 在参数配置文件中修改权重路径其余不变
ckpt = '你的训练权重路径'
  • Awesome-Backbones路径下打开终端运行
python tools/evaluation.py models/efficientnetv2/efficientnetv2_b0.py

在这里插入图片描述

  • 单张图像测试,在Awesome-Backbones打开终端运行
python tools/single_test.py datasets/test/dandelion/14283011_3e7452c5b2_n.jpg models/efficientnetv2/efficientnetv2_b0.py

在这里插入图片描述
至此完毕,实在没运行起来就去B站看我手把手带大家运行的视频教学吧~

5. 其他教程

除开上述,我还为大家准备了其他一定用到的操作教程,均放在了GitHub项目首页,为了你们方便为也粘贴过来

有任何更新均会在Github与B站进行通知,记得Star与三连关注噢~

### 使用 EfficientNetV2 训练自定义数据集 为了使用 EfficientNetV2 模型训练自定义数据集,需遵循一系列特定的操作流程来准备环境、处理数据以及配置模型。以下是详细的指南。 #### 准备工作 安装必要的库和依赖项对于启动项目至关重要。确保 TensorFlow 和其他所需工具已正确设置: ```bash pip install tensorflow==2.10.0 # 或者更高版本 pip install tf-models-official ``` #### 数据预处理 考虑到不同框架对输入格式的要求各异,在此之前应先将标签好的图像从 Pascal VOC 转换成 COCO 格式的 JSON 文件[^2]。这一步骤可以通过执行 `make_main_txt.py` 及 `appliance.py` 来完成,这两个脚本负责创建所需的训练验证分割列表并转换标注文件至目标格式。 一旦完成了上述准备工作,则可继续进行下一步——调整路径并将生成的训练验证集复制到新的工程项目目录内以便后续操作。 #### 构建 EfficientNetV2 模型 TensorFlow 官方提供了官方实现方式用于构建 EfficientNetV2 模型架构。通过调用如下 Python API 即可轻松获取预定义网络结构实例: ```python import tensorflow as tf from official.vision.image_classification import efficientnet_model_builder_v2 def build_efficientnetv2(input_shape=(224, 224, 3), num_classes=1000): model = efficientnet_model_builder_v2.EfficientNetV2( model_name="efficientnetv2-s", # 支持多种变体:"b0","m","l" input_specs=tf.keras.layers.InputSpec(shape=input_shape), classes=num_classes, include_top=True # 如果只想提取特征则设为False ) return model ``` 该函数允许指定输入尺寸 (`input_shape`) 和分类数目 (`num_classes`) 参数来自定义最终层输出维度以适应具体应用场景需求。 #### 加载增强数据集 为了让模型更好地泛化性能,通常会对原始图片实施随机变换作为扩增手段之一;同时利用 TensorFlow 的 Dataset API 实现高效读取批量化加载过程: ```python image_size = (224, 224) data_dir = 'path/to/your/dataset' batch_size = 32 train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset='training', seed=123, image_size=image_size, batch_size=batch_size) val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset='validation', seed=123, image_size=image_size, batch_size=batch_size) ``` 此处假设数据已被划分为训练集和测试集两个子文件夹存放于同一上目录之下,并且每类样本各自占据独立的小分区。 #### 编译训练模型 最后一步涉及编译所建立起来的神经网络对象并通过 fit 方法传入先前整理完毕的数据流来进行迭代优化直至收敛为止: ```python model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_ds, epochs=epochs, validation_data=val_ds) ``` 以上就是基于 TensorFlow 平台采用 EfficientNetV2 进行迁移学习从而针对个人兴趣领域内的视觉识别任务开展研究工作的基本步骤概述[^1]。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥都生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值