元学习Meta Learning/Learning to learn

元学习是一种让模型能从以往经验中学习并适应新任务的技术,尤其适用于小样本学习。在元学习中,任务被视为训练单位,每个任务包含支持集和查询集。其主要应用包括超参数优化、网络结构探索和小样本图像识别。元学习与迁移学习相似,都旨在提升模型的泛化能力,但元学习更侧重于任务和数据的双重采样,而迁移学习则更关注从已知任务到未知任务的知识迁移。
摘要由CSDN通过智能技术生成

目录

元学习

训练

用途

学习方法

元学习和迁移学习的区别和联系


元学习

Meta Learning/Learning to learn即利用以往的知识经验来指导新任务的学习,使网络具备学会学习的能力,是解决小样本问题(Few-shot Learning)常用的方法之一。

训练

在元学习中,训练单位分层级了,第一层训练单位是任务,也就是说,元学习中要准备许多任务来进行学习,第二层训练单位才是每个任务对应的数据。(训练样本中的训练集一般称作support set,训练样本中的测试集一般叫做query set)

 图片来源:https://www.jianshu.com/p/0673fc7d7760

meta_example

 

用途

优化超参数和神经网络、探索好的网络结构、小样本图像识别和快速强化学习等。

学习方法

(1)recurrent models

(2)metric learning

(3)learning optimizers

元学习和迁移学习的区别和联系

从目标上看,元学习和迁移学习的本质都是增加学习器在多任务的范化能力,但元学习更偏
重于任务和数据的双重采样,即任务和数据一样是需要采样的,具体来说对于一个10分类任
务,元学习通过可能只会建立起一个5分类器,每个训练的episode都可以看成是一个子任
务,而学习到的f(x)可以帮助在未见过的任务里迅速建立mapping。而迁移学习更多是指
从一个任务到其它任务的能力迁移,不太强调任务空间的概念。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嗯呢嗯呢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值