目录
元学习
Meta Learning/Learning to learn即利用以往的知识经验来指导新任务的学习,使网络具备学会学习的能力,是解决小样本问题(Few-shot Learning)常用的方法之一。
训练
在元学习中,训练单位分层级了,第一层训练单位是任务,也就是说,元学习中要准备许多任务来进行学习,第二层训练单位才是每个任务对应的数据。(训练样本中的训练集一般称作support set,训练样本中的测试集一般叫做query set)
图片来源:https://www.jianshu.com/p/0673fc7d7760
用途
优化超参数和神经网络、探索好的网络结构、小样本图像识别和快速强化学习等。
学习方法
(1)recurrent models
(2)metric learning
(3)learning optimizers
元学习和迁移学习的区别和联系
从目标上看,元学习和迁移学习的本质都是增加学习器在多任务的范化能力,但元学习更偏
重于任务和数据的双重采样,即任务和数据一样是需要采样的,具体来说对于一个10分类任
务,元学习通过可能只会建立起一个5分类器,每个训练的episode都可以看成是一个子任
务,而学习到的f(x)可以帮助在未见过的任务里迅速建立mapping。而迁移学习更多是指
从一个任务到其它任务的能力迁移,不太强调任务空间的概念。